
Byzantine Fault Tolerant Set Reconciliation

Bachelor Thesis

Degree programme: BSc in Computer science

Author: Elias Summermatter

Thesis advisor: Prof. Dr. Christian Grothoff

Expert: Han van der Kleij

Date: June, 17th 2021

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

Abstract

The goals of the thesis are to improve the existing implementation of

the Byzantine Fault Tolerant Set Reconciliation in the GNUnet project

regarding performance and security and to create an RFC documenting

the protocol to publish as a draft to the IETF Datatracker. The im-

provements made in the protocol are validated by logical reasoning and

measurement. The existing implementation in GNUnet is used for re-

vocation in the GNU Name System, but could be used in the future for

decentralised e-voting systems to achieve consensus on the ballots between

voting authorities.

The goal of reconciliation protocols is to �nd an e�cient way in a

peer-to-peer network to compute the union of two sets of elements over a

network. Since the sets can have large overlaps and small di�erences, it

could be ine�cient to transfer all elements of one peer to the other and

then compute the union on one site. Eppstein demonstrated a better way

to reconcile sets with small di�erences using advanced probabilistic data

types. Dold provided an original implementation of Eppstein's ideas.

The enhancement made to the protocol for this thesis have improved the

performance of matching sets with small di�erences by 30 to 42 percent.

Also, several serious implementation errors that made the previous proto-

col unstable, e.g., for larger sets, have been �xed. Furthermore, through

the exact analysis and documentation of the individual protocol steps and

messages, various security improvements in the protocol and also basic

sanity checks in the code could be implemented. A complete binary level

speci�cation in form of an RFC is published on the IETF Datatracker.

2

Acknowledgements

I would like to thank all those who supported and motivated me during the
preparation of this bachelor thesis.

First of all, I would like to thank Prof. Christian Grotho�, who supervised
my bachelor thesis. I would like to thank him for his helpful suggestions and
constructive criticism during the preparation of this thesis.

For evaluating and dealing with the thesis I would like to thank Mr. Han
van der Kleij as the examining expert.

I thank BFH for providing me with access to computing resources needed
for the simulations taking hundreds of thousands of CPU hours.

I would also like to thank Mr. Michael Scheurer who supported me in my
company throughout my studies.

Finally, I would like to thank Maria Summermatter, my mother, who made
my studies possible with her support and also assisted with proofreading.

3

Table of Contents

Contents

1 Introduction 6

2 Related Work 7

3 Code Improvements 9

3.1 Determining the Optimal IBF Size after Failed Decoding 9
3.2 Variable IBF Counter Size . 11
3.3 Statemachine . 12
3.4 Improve Strata Estimator prediction precision 14

3.4.1 Added Support for Multiple Strata Estimators 14
3.4.2 IBF Size in Strata Estimator 16
3.4.3 Number of Strata Estimator dependant on Set Size 17
3.4.4 Result . 18

3.5 Message Changes . 19
3.5.1 Send Full Message . 19
3.5.2 IBF Message . 19
3.5.3 Operation Request Message 20
3.5.4 Inquiry Message . 20

3.6 Error in Salting of IBF . 20
3.7 Additional Phases . 21

3.7.1 Full Receiving . 21
3.7.2 Renamed Phases . 21

3.8 Minimal Number of IBF Buckets 21
3.9 Determinate Average Element Size 22
3.10 Determinate Maximal IBF Counter 23
3.11 Improve IBF Size . 24
3.12 Check Bucket Falsely Classi�ed as Pure 26

4 Performance Tests 27

4.1 Goals . 27
4.2 Test Sets Generation . 28
4.3 Measure the Round Trip Time (RTT) 30
4.4 Measure the Bandwidth . 32
4.5 Performance Tests . 33

4.5.1 Strata Estimator Estimation Distribution 33
4.5.2 IBF Parameter Study . 34
4.5.3 Di�erential vs. Full Mode 42

4.6 Results . 43

4

5 Security 49

5.1 Attacker . 49
5.2 Validate Message Received in Correct Phases 50
5.3 Message Control Flow . 51
5.4 Limit Active/Passive Switches in Di�erential Synchronisation . . 54
5.5 Full Synchronisation Plausibility Check 55
5.6 Validate Mode of Operation . 58
5.7 Byzantine Boundaries . 58
5.8 Security Level . 60
5.9 Results . 60

6 Conclusion 61

6.1 Summary . 61
6.2 Addressees of the Improvement 61
6.3 Future Work . 62

7 Indices and References 64

8 Declaration of Authorship 70

9 Appendix A - Project Management 71

9.1 Risk Analysis . 72
9.2 Time-Line . 73
9.3 Time Management . 74
9.4 Communication/Meetings . 74
9.5 Decisions . 75

9.5.1 Performance Analysis: Mathematical or through Simula-
tions . 75

9.5.2 IBF Factor Static or Variable 75
9.5.3 Improvements . 75

9.6 Conclusion . 75

10 Appendix B - RFC 76

5

1 Introduction

A way is sought to reconcile the di�erences between two sets over a network
as simply and resource-e�ciently as possible. This is important for sensitive
applications, such as e-voting, when the votes are reconciled in a decentralised
system between the electoral authorities. With an e�cient set reconciliation
protocol, it is possible to achieve consensus on the ballots the votes e�ciently[1,
2]. Especially in this �eld, precision and security are extremely important.

An e�cient way to reconcile two sets of elements over a network was �rst
described by Eppstein[3]. This work is primarily concerned with matching small
di�erences in very large sets, because with large set di�erences it is usually more
resource-e�cient to transfer the entire sets instead of eliciting the di�erence
between the two sets and only transferring the resulting di�erence.

A �rst implementation was developed and implemented by Dold and Grotho�
([4]: src/setu in 2016) . The implementation has not yet been speci�ed nor has
it been tested more closely for performance and security. Currently, the imple-
mentation is mainly used in the GNU Name System (GNS)[5] to synchronise
revocations across all peers from the P2P network.

This thesis addresses security and performance limitations of the current
implementation. These improvements are quanti�ed by measurements or logical
reasoning. A purely mathematical analysis of the problem would have been
prohibitively complex, as numerous variables in�uence the optimal performance.
Thus, a combination of logical reasoning backed by experimental measurements
was performed. A server with large computing power was available, which
signi�cantly reduced the time of the simulations. Logical reasoning was chosen
for the analysis and improvement of the security aspects.

In addition, an RFC-like binary level speci�cation of the optimised imple-
mentation was written. With this speci�cation, the described protocol for set
reconciliation could be ported to other programming languages and thus become
more widely available.

This work is divided into two parts. In the RFC the implementation, spec-
i�cation and the background to the topic are described. The RFC is in the
Appendix B - RFC. Parts and details that are not important for an implemen-
tation are described directly in the main document.

Privacy and security on the Internet are of concern to me. This work helps
establish GNS, make it more secure and stable, which could lead to increased
use of GNS, replacing the insecure name resolution protocols used today. Fur-
thermore, I am contributing to the development of Free Software.

6

2 Related Work

This paper builds on the work of Florian Dold and Christian Grotho� (2017) en-
titled "Byzantine set-union consensus using e�cient set reconciliation"[1]. The
set union protocol developed by Dold is extended and improved by this work.
Security and performance aspects were looked at on the protocol level, while
the work of Dold and Grotho� based the experimental measurements mainly on
the overlying layers of GNUnet. Many measurements in the work were made
directly by CADET [6].

The theoretical basis for determining the set di�erence comes from a paper
by Prof. David Eppstein. "What's the di�erence? E�cient Set Reconciliation
without Prior Context". [3].

In his work, Eppstein showed a way for two peers to synchronise their sets
in a single round with communication overhead proportional to the set size
di�erence. The method shown by Eppstein does not require prior knowledge
such as logs of the last synchronisation. In his paper, Eppstein tried to answer
two questions that are closely related to this thesis:

- "What are the optimal parameters for an IBF?" (Section 6.1 of Eppstein's
paper): Eppstein found that the relevant parameters for tuning an IBF
are the number of buckets in the IBF and the number of times an element
is mapped to the IBF. These two values are critical in determining how
often the decoding of an IBF fails. He has found that the number of times
an element is mapped to the IBF in his experiments is optimal at the value
4.

- "How should one tune the Strata Estimator to balance accuracy and over-
head?"(Section 6.2 of Eppstein's paper): The paper argues, that if the
Strata Estimator's estimate is too low, there is a risk of creating an IBF
that is too small, and this brings a risk of having to transfer a new, larger
IBF. This leads to a lot more bandwidth being used, so care should be
taken that the set estimate needed to determine the IBF is rather set
too high than too low. Eppstein compares in his work the "min-wise� in-
dependent permutations locality sensitive hashing scheme"[7] (min-wise)
with Strata Estimators. He comes to the conclusion that the min-wise
estimator is very susceptible to variances and therefore it can come to
large inaccuracies with small set di�erences.With large set di�erences the
min-wise estimator is superior to the Strata Estimators. In his work he
combined the min-wise estimator with the Strata Estimator and achieved
a new hybrid estimator that combines both advantages in one. However,
this is not interesting for this work, since di�erential synchronisation is
used for which a precise estimation is important only for small set di�er-
ences.

The protocol proposed by Eppstein uses Invertible Bloom Filters (IBFs) and
Strata Estimators (SE) to perform e�cient di�erential synchronisation without
prior knowledge. An Invertible Bloom Filter is a propabilistic data type that

7

supports three operations: Add elements, Remove elements and determine the
element di�erence between two Invertible Bloom Filters by an XOR operation.
A Strata Esimator is a construct consisting of several Invertible Bloom Filters, a
Strata Estimator allows to estimate the set di�erence. The protocol proposed by
Eppstein is very simple and uses intially a Strata Estimator to calculate the set
di�erence and then creates an IBF of the optimal size based on this calculated
set di�erence. In this way, the elements that are missing from one peer or the
other can be identi�ed and exchanged.

Eppsteins work is the basis for the implementation and the basis for the
improvements achieved by this thesis.

There are a few other studies that address the issue. One recent study is
created by Michael Mitzenmacher and Tom Morgan, titled "Robust Set Recon-
ciliation via Locality Sensitive Hashing" from 2018[8].

However, Mitzenmacher's paper deals with points in a metric space that are
close together. To achieve this, well-known set reconciliation techniques were
combined with locality-sensitive hashing[8]. This thesis, in contrast to Mitzen-
macher's work, does not deal directly with points in metric space. Another key
di�erence is that Mitzenmacher's work is concerned with �nding points that are
close together, but in this thesis the goal is to synchronise the sets precisely. The
work of Mitzenmacher combines for the �rst time IBF with Locality-sensitive
hashing. This work is interesting but cannot contribute much to our work.

Michael Mitzenmacher published a secound paper together with Rasmus
Pagh under the title "Simple Multi-Party Set Reconciliation", which was pub-
lished in 2015 [9]. The second work by Mitzenmacher, on the other hand, deals
with the synchronisation of sets across multiple peers. In Mitzenmacher's work,
emphasis was placed on the fact that set reconciliation can take place e�ciently
not only between two peers but between many peers. The developed technique
should also work e�ciently if it is not known exactly how many peers partici-
pate in the set reconciliation. For this purpose, network coding techniques in
conjunction with Invertible Bloom Lookup Tables (IBLT)[10, 11] were used,
which enabled a more e�cient network usage. The reason why Mitzenmacher's
proposed protocol cannot be used for implementation on the GNUnet is that
it relies on a central place, a relay, to process the IBLT. GNUnet would have
to operate a relay, but this needs to be avoided in a decentralised peer to peer
setting.

8

3 Code Improvements

This section describes improvements that are neither directly related to the
performance nor to the security of the protocol.

3.1 Determining the Optimal IBF Size after Failed De-
coding

The original implementation stipulated that after failed decoding the size of the
IBF was doubled. This is not optimal because the size of the IBF is always dou-
bled. If in the extreme case with an initial set di�erence of 10'000 elements all
but two elements could be decoded, the size of the IBF is still doubled, although
the remaining set di�erence contains only 2 elements. It is therefore desirable
that the new size of the IBF should also take into account how many elements
were successfully decoded.

The heuristic that determines how big the IBF is after a failed decoding has
been adjusted as follows:

Algorithm 1 Determinate next IBF size
Inputs:

i_factor: The factor by which the difference has

been multiplied to get the ibf bucket number

decoded_elements: Number of elements that have been

successfully decoded

last_ibf_size: The number of buckets of the last

IBF

Output:

next_size: Size of the next IBF

FUNCTION get_next_ibf_size(i_factor, d_elements, l_ibf_size)

next_size =(l_ibf_size * 2) - (i_factor * d_elements)

RETURN MAX(37, next_size)

END FUNCTION

The new heuristic always doubles the size of the IBF, but also takes into account
the decoded elements by subtracting the successfully decoded elements from the
new doubled IBF size.

The theoretical bene�t can be determined mathematically by a simple cal-
culation.

If there is initially a set di�erence of 10'000 elements and therefore an IBF
with 20'000 buckets and the decoding fails after 9500 elements, a new IBF of

9

size 20'000 would be sent according to the old implementation. If one calcu-
lates 13 bytes per bucket (packet header is neglected) this is 260kb (13*20k) of
bandwidth. With the new heuristic there would be 1000 buckets (10'000*2 -
2 * 9500) which is 13kb (13*1k). This means a potential bandwidth saving of
factor 20 on the new attempt. Adding the 130kb (10k*13) initial transfer, there
are 390kb with simple doubling and 143kb with the new heuristic. Increasing
the IBF with the new heuristic leads to a saving factor of 2.5. Naturally, this
simple analysis neglects that a smaller IBF may fail to decode a second time,
causing additional round trips.

Thus, in order to measure the e�ective di�erence in practice, experiments
were carried out to substantitate the previous logical plausibility argument. The
aim was to �nd out whether the new heuristic produces better results, and to
quantify the improvement. To determine whether multiplying the size of the
last IBF by a factor of 2 is the optimal value, the heuristic was also generated
with a factor of 1.5 and 2.5.

Figure 1: Performance improvements by new introduced IBF size heuristic

On the graphs, clearly can be seen that the heuristic is superior to the
previous implementation in terms of the number of bytes transferred. With the
heuristic that produces a doubling of the not decoded elements, one sees with
an IBF factor of 2 an improvement compared with the static variant of 34k →
32k = 7%. The improvement is much smaller than in the calculation example
above. However, it must be taken into account that with an IBF factor of 2, a
decoding error occurs only in 20% of the cases and this heuristic can bring an
improvement only in these cases. The e�ect on transmissions that e�ectively
fail is likely to be up to 5 times higher, i.e., about 35%. This 35% bandwidth
saving compared to the old implementation is signi�cant.

10

The second graph shows the average number of RTTs required for the cor-
responding IBF factors. Here it can be clearly seen that the number of RTTs
required for the smallest factor measured (1.5) is disproportionately high com-
pared to the other larger factors. As expected, larger factors also produce a
better result. This is not signi�cant and shows no di�erences above a base IBF
factor of 1.5.

3.2 Variable IBF Counter Size

Another uncovered problem of the original implementation was, that the counter
of the IBF was always a signed 1-byte number. This 1-byte number allowed
a maximum counter of 126 (127 means, that the counter has over�owed, see
Appendix B - RFC.

This means that if a single bucket is hit more than 126 times, the IBF cannot
be decoded anymore. In the "worst case" this means that already after 127 hits
an IBF cannot be decoded successfully. This is the case, if all elements are
mapped to the same bucket. The best case is when each bucket is hit the same
number of times; then the maximum number of elements is calculated with the
following formula:

elementsmax =
126×NumberOfElements

NumberOfBucketsAnElementIsMapped
(1)

Figure 2: Formula to calculate the max elements in an IBF bucket for the old
implementation

This means that in an IBF with 32 buckets (original minimum number of
buckets in an IBF), at least one counter over�ows between 126 and 4032 (126 *
32) hits. This is only true if it is assumed that an element is mapped into only
one bucket. In the new implementation, an element is not mapped into one but
three buckets, in the old implementation even to four buckets. This means that
these calculated numbers (126 and 4032) must be divided by three and four
respectively. As long as the set from which the IBF was created is su�ciently
small, this might not be a problem.

Since the number of IBF buckets in the existing implementation is only
dependent on the set di�erence (IBF factor), but not on the size of the sets, it
would quickly become a problem with small set di�erences but large sets. With
a set di�erence of <16 (with IBF factor of 2, 2*16=32) elements and a k-value
(number of buckets to which a bucket is mapped) of 3, it would lead to a set
size of 127 elements at the earliest and after 345 (4032/3 + 1) elements at the
latest, that the �rst counter over�ows and the IBF can no longer decode.

For this problem, there are two possible solutions. The �rst possibility is
to make the minimum size of the IBF dependent on the absolute set size in
addition to the dependence on the set di�erence. This would cause the size of
the IBF to grow linearly with the absolute set size. Calculating the minimum
size would be complicated, as one would need to �nd a formula to calculate

11

the probability of 127 elements mapping to the same bucket given an equally
distributed mapping function. This problem could be seen as a modi�ed form
of the Birthday Paradox. [1] to be described, �nding such a formula or deriving
it would be di�cult.

The second and better possibility is to select the counter size for the trans-
mission variable when encoding the message for transmission over the network
on the basis of the largest counter in the IBF, so that the counter for the trans-
mission becomes maximally compact. This has the advantage that one can
calculate internally with an 8-byte unsigned integer, but the bytes for trans-
mission do not grow linearly, but logarithmically to the absolute set size and
one can guarantee that it never (or at least not before 18446744073709551615
bucket hits) comes to a decoding failure because of the over�ow of a counter.

The exact implementation can be found in the Git[4] of the GNUnet project
as C code or in the RFC de�nition as pseudocode.

3.3 Statemachine

In order to make it easier to understand how the implementation of the Set
Reconciliation Protocol works and to make the protocol more comprehensible
for third parties, a statemachine diagram was created in this work that depicts
the protocol. It was documented which messages can be received and sent in
which phases and which messages can lead to which phase changes.

The initializing peer starts in the "Initializing Connection" phase and the
peer expecting the connection starts in the "Expecting Connection" phase. In
the �rst step after the connection is established, the receiving peer transmits
the Strata Estimator to the initializing peer, so that it can estimate the set
di�erences. As soon as the estimator has made the estimation, the peer decides
whether to use the full synchronisation mode of operation or the di�erential
mode of operation. If it chooses the full synchronisation mode of operation, The
peer decides whether to transmit his set �rst or to request the set from the other
peer. In the full mode of operation �rst one peer transmits the set to the other
peer and then the other peer responds with the elements that are missing in the
set of the �rst peer. If the sets are identical the full synchronisation is �nished.
If the initializing peer decides to use the di�erential mode of operation, the
initializingpeer transmits an IBF to the receiving peer and becomes the passive
decoding peer. As soon as the receiving peer receives the IBF, it starts decoding
the elements in the IBF and becomes an active decoding peer. The active peer
now requests all elements that are missing in his set and sends to the passive
peer all elements that are missing in his set. It is now possible that the decoding
of the IBF fails. In this case there is a role change when the active peer sends
an IBF to the passive peer. By sending the IBF a role change occurs, the active
decoding peer becomes the passive decoding peer and the passive decoding peer
becomes the active decoding peer. This active/passive switch is repeated until
the sets are identical and the operation is completed.

A detailed walkthrough and explanation in detail can be found in the Ap-
pendix B - RFC in the section �Mode of Operation�.

12

F
ig
u
re

3
:
S
ta
tem

a
ch
in
e
d
ia
g
ra
m

set
u
n
io
n
o
p
era

tio
n

1
3

3.4 Improve Strata Estimator prediction precision

A central point of the protocol is the initial estimation of the set di�erence at the
beginning of the protocol. The set di�erence is an important input parameter
to determine which mode of operation should be used so that the sets can be
matched with as little e�ort as possible. The fact that the estimated di�erence
is as precise as possible is also central to making stricter security assumptions
and being able to exclude peers that do not follow the protocol more quickly.

3.4.1 Added Support for Multiple Strata Estimators

The simplest and most obvious way to improve an estimate is to carry it out
several times and to average it. This is based on the "Monte Carlo methods"
and the underlying stochastic law "of large numbers" 1 which applies to random
experiments:

�Many quantitative problems in science, engineering, and eco-
nomics are nowadays solved via statistical sampling on a computer.
Such Monte Carlo methods can be used in three di�erent ways: (1)
to generate random objects and processes in order to observe their
behavior, (2) to estimate numerical quantities by repeated sampling,
and (3) to solve complicated optimisation problems through random-
ized algorithms.�[12]

Here, the Monte Carlo methods are applied in a weakened variant, as described
in the quoted part under point 2.

In the original implementation, only one Strata Estimator is exchanged in
each case and the estimate calculated from this is the estimate used for the
further protocol. The new improved implementation should improve this and
send 1,2,4 or 8 Strata Estimators (n) depending on the local set size. Based
on these estimates, the average can be formed and an estimate with higher
precision can be achieved.

To create statistically independent Strata Estimators, the elements must be
salted with the salting function known for salting the IBF.

The elements added to the IBFs of di�erent Strata Estimators must be seeded
di�erently. So that the elements for di�erent Strata Estimators are mapped to
di�erent buckets. If the IBFs are not salted, then identical Strata Estimators
are created. In this case the estimation is the same for all Strata Estimators
and there is no added value by transferring multiple IBFs. The implementation
of salting as a bit rotation has the advantage that it is very simple, very easy to
undo and gives a good distribution over the buckets of the IBFs. The shift by 7
bits was chosen because 7 is a prime number and therefore also a generator of
the group 64[13].

1https://www.investopedia.com/terms/l/lawoflargenumbers.asp

14

https://www.investopedia.com/terms/l/lawoflargenumbers.asp

The salting function:

Algorithm 2 Salting function IBF/Strata Estimator

Inputs:

value: Input value to salt (needs to be 64 bit unsigned)

salt: Salt to salt value with

Output:

Returns: Salted value

FUNCTION salt(value, salt)

s = (salt * 7) % 64

RETURN (value >�> s) | (value <�< (64 - s))

END FUNCTION

When the implementation was adjusted for multiple Strata Estimators, the
salts 0,1,2,3,4,5,6 and 7 were applied to the 8 di�erent Strata Estimators. In
a �rst attempt to adjust the implementation, the average estimates did not
become more precise as expected, but the estimates became less precise. The
reason for this was that the 8 Strata Estimators were statistically dependent and
not independent as expected. The statistical independence could be improved
by multiplying the salt by 7 (hence the "salt * 7" in the pseudocode of the salt
function). As the table below shows, this led to a signi�cantly better estimate:

salt salt * 7 Improvements

Experiments 200'000 200'000 -
Strata Count 4 4 -

Mean +1 0 100%
StdDev 173 93 54%
Media -18 -4 450%
Min -494 -472 4.6%
Max +1314 +820 60%

Percentiles 99 +512 +252 200%
Percentiles 75 +102 +58 76%
Percentiles 50 -18 -4 450%
Percentiles 25 -120 -62 94%
Percentiles 1 -328 -200 64%

Table 1: SE improvements through multiplying salt by 7

The graphical representation of the numbers shows this even more clearly:
In the plot on the right, the salt was multiplied by 7:

15

Figure 4: SE improvements through multiplying salt by 7 / Actual set di�erence
is 910

These plots show that the distribution of the estimates is closer together
and the estimates have become more precise. This suggests that the statistical
independence of the Strata Estimators has been signi�cantly improved by this
small change.

3.4.2 IBF Size in Strata Estimator

As a further change, an attempt was made to set the number of buckets of the
IBFs in the Strata Estimators to prime numbers, namely 61, 67, 71, 73, 79, 83,
89, 97. This only led to a small improvement. In the original implementation,
the number of buckets of the IBFs in the Strata Estimator was set to 80. In
the new implementation, the number of buckets was set to the prime number
closest to 80, that is to 79. A small positive e�ect is nevertheless measurable.
The explanation why using a prime number as the number of buckets improves
the rate of successful decodes, is that the hash of the elements is distributed
among the buckets by an operation modulo the number of buckets. This means
that the distribution of the elements is best , when the modulo operator is
a generator of the whole group and not only of a part of it. It follows from
Lagrange's theorem[13] that the order of any element (i.e. the size of the group
generated by any element) of a group of size p must be either 1 or p. Since
the improvement is very simple and also provides better results, the number of
buckets for IBF was set to the minimum of 79 in the new implementation.

16

IBF Bucket
count 80

IBF Bucket
counts primes

Improvements

Experiments 20'000 20'000 -
Strata Count 4 4 -

Mean +2 0 -
StdDev 154 146 5%
Media -14 -12 17%
Min -434 -458 -6%
Max +1178 +1038 13%

Percentiles 99 +438 +414 6%
Percentiles 75 +94 +86 9%
Percentiles 50 -14 -12 17%
Percentiles 25 -106 -102 4%
Percentiles 1 -290 -290 0%

Table 2: Performance impact IBF bucket number is a prime in Strata Estimator

Although the improvement in the estimate is in the single-digit percentage
range for most values, the change does not increase the implementation com-
plexity as it can also be implemented without e�ort and is thus worthwhile.

3.4.3 Number of Strata Estimator dependant on Set Size

The most important disadvantage of sending multiple Strata Estimators is that
additional bandwidth is consumed by the additional Strata Estimators. Since
with small sets the set di�erence estimation plays a much smaller role and the
additional bandwidth consumed plays a correspondingly larger role, it makes
sense to make the number of Strata Estimators sent variable and dependent on
the local set size.

An important parameter to determine how many Strata Estimators should
be transmitted is the e�ective size of the Strata Estimators. As can be seen
from the table below, the size is linearly increasing. It can be assumed that
approximately 4221 bytes (8441/2) are used per Strata Estimator.

Number of Strata
Estimators

Compressed Size Enlargement factor

1 4266 -
2 8441 1.97
4 16828 1.99
8 33658 2.00

Table 3: Compressed Strata Estimator sizes

17

Based on these values, a heuristic was de�ned when 1, 2, 4 or even 8 Strata
Estimators should be sent. The heuristic is de�ned in the following table. The
rules are based on the average element size multiplied by the number of elements
in the set. This value is referred to as "b" in the table:

Number of Strata
Estimators

Implementation Rule Avg Strata Estimator
Size

1 b < 68k (4221 * 16) 4k
2 b > 68k (4221 * 16) 8k
4 b > 269k (4221 * 64) 17k
8 b > 1'077k (4221 * 256) 34k

Table 4: Determinating optimal number of Strata Estimators

3.4.4 Result

By adding support for a variable number of Strata Estimators, the precision
could be signi�cantly improved for larger sets. This can be seen in the following
plot, where the deviation from the optimal value was plotted:

Figure 5: Improving estimates with multiple IBFs

18

It can be clearly seen that, as expected, the estimation becomes more and
more precise the more Strata Estimators (SE) are applied to obtain an estimate.
The spread is signi�cantly reduced by each additional Strata Estimator and an
estimate becomes much more precise. Precise estimates help in the security
analysis to get tighter bounds for the likelihood of decoding failures with benign
participants, and can thus terminate the protocol with malicious participants
earlier.

3.5 Message Changes

During the implementation of the performance and security improvements, it
became necessary to adapt the contents of various messages and to de�ne new
messages:

3.5.1 Send Full Message

In the original implementation, in the full synchronisation mode of operation,
either a "Request Full" message was used to announce that the other peer
should transmit his set or the sending of the "Full Element" messages implicitly
communicated that the peer would transmit its own set �rst.

In this case, for security hardening, it became necessary to introduce a new
message that allows meta data about the sets to be exchanged before all elements
are sent, in particular the calculated set di�erences. More details on the new
message structure can be found in the RFC in the Appendix B - RFC.

3.5.2 IBF Message

In the IBF message, new �elds were added and existing �elds were adapted, as
these were needed for the validation of the Mode of Operation:

� An existing 8-bit �eld, an 8-bit padding �eld (reserved1) and a second
16-bit padding �eld (reserved2) have been converted into a 32-bit IBF
size �eld. This is necessary because in the old implementation the IBF
size was given using a logarithmic order (2^order=size), but now the size
of the IBF is no longer given in orders of magnitude, but as a discrete
number.

� With the introduction of the variable counter size, the maximum counter
in the IBF also had to be transferred; for this purpose, an unsigned 16-bit
value was inserted.Strata Estimator Message

During the optimisation of the Strata Estimator, a new �eld was introduced in
the Strata Estimator Message, because a variable number of Strata Estimators
can now be transmitted. The new �eld de�nes how many Strata Estimators are
in the message.

19

3.5.3 Operation Request Message

In the existing implementation, an "Operation Type" was included in the "Op-
eration Request". This �eld could take the following values: NONE, INTER-
SECTION and UNION. Since only the UNION operation is supported by this
protocol, this �eld is super�uous and can be removed. In this way, 32 bits can
be saved.

3.5.4 Inquiry Message

In the "Inquiry" message, the old implementation had a "reserved padding"
�eld that was �lled with zeros and did not contribute to the alignment. This
has been removed, thus saving another 32 bits per "Inquiry" message.

3.6 Error in Salting of IBF

One of the more serious bugs in the original implementation was that if the �rst
IBF did not decode, in the majority of cases the next IBF (doubled in size) did
not decode either. This was because the salt used to create the IBF was always
the same for both peers. This means that if, for example, one peer created an
IBF with the salt "1" and the other peer could not decode it, the other peer also
created an IBF with the salt "1" in the �rst round. Only when a new switch
was made, did the �rst peer change its salt to "2". In the case of di�erential
synchronisation, this meant that in practically every case when the decoding of
the �rst IBF failed, an additional half round trip had to be spent. This could be
solved relatively easily by starting the salts of the peers in a staggered manner;
for example, one starts at 0, the other at 31. The improvement becomes clear
when one looks at the table below, which shows how many simulations (all
di�erential mode of operation) required how many active/passive switches:

Active/Passive
Switches

Buggy Implementation Fixed Implementation

0 47498 40457
1 0 8841
2 2493 656
3 1 29
4 7 17
5 0 0
6 0 0
7 0 0
8 1 0
9 0 0

Total Simulations 50000 50000

Table 5: Buggy vs. �xed IBF salt implementation

20

One can clearly see that the improved implementation shows a better pattern
that corresponds to what one would expect. It is noticeable that the �xed
implementation seems to need more active/passive switches even though they
are better distributed. This is to be expected, as some unrelated parameters of
the original implementation were chosen much more aggressively. However, this
is re�ected negatively in the required bandwidth, which cannot be taken from
this table.

3.7 Additional Phases

In the original implementation, phases were missing and the implementation
was extended by these phases.

3.7.1 Full Receiving

The original implementation did not have the "Full Receiving" phase, which was
added in the revision. In the old implementation, all messages newly processed
in the "Full Receiving" phase were processed in the "Expect SE" phase. This
new phase is necessary to make a more �ne-grained message validation. It makes
the state diagram clearer and easier to understand.

3.7.2 Renamed Phases

Various phases in the code have been renamed to correspond to the state dia-
gram:

� The "Done" phase has been renamed "Finished".

� The "Expect IBF" phase has been renamed "Expecting IBF".

� The "Inventory Acitve" phase has been renamed "Active Decoding".

� The "Inventory Passive" phase has been renamed "Passive Decoding".

� The "ibf cont" phase has been renamed "Expecting IBF Last".

3.8 Minimal Number of IBF Buckets

In the original implementation, the minimum number of buckets in an IBF was
limited to 16. This lower limit was increased to a prime number, 37, due to
various experiments and experiences. This reduces the risk of an active/passive
switch for small set di�erences. Although this requires additional bandwidth,
it still pays o�, as synchronisations with small set di�erences often occur in a
peer-to-peer network.

21

3.9 Determinate Average Element Size

For many applications, it can be assumed that all elements in the set have the
same size. However, there are also areas of application where the size of the
elements di�ers.

The average element size is a central parameter for performance optimi-
sation, also for security assumptions. Therefore, an adaptation to the actual
element sizes is desirable. A simple function was written that functions as an
iterator and can be iterated over each element in a hash table:

Algorithm 3 Function to calculate average element size

Input:

elements : Hashtable which contains all elements

Output:

Returns the average size over all elements

FUNCTION get_avg_size(elements)

total_size = 0

FOR element in elements DO

total_size += size(element)

END FOR

RETURN total_size / len(elements)

END FUNCTION

22

3.10 Determinate Maximal IBF Counter

To compress the IBF counters, a function was needed that could determine the
minimum number of bits needed to represent the highest counter, based on the
uncompressed IBF. The following pseudocode implementation was developed
for this purpose:

Algorithm 4 Function to determinate minimal IBF counter size
Input:

ibf : The IBF

Output:

Return the minimal required bit size of the counter to

represent all counters

FUNCTION ibf_get_min_counter_size (ibf)

max_counter = 0

FOR (counter in ibf.counters) DO

IF (counter > max_counter) THEN

max_counter = counter

END IF

END FOR

RETURN 64 - COUNT_TRAILING_ZEROS(max_counter)

END FUNCTION

As �COUNT_TRAILING_ZEROS� function a fast internal compiler func-
tion to count the trailing Zeros can be used (in GCC for example __builtin_clzll
2)

2https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html

23

https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html

3.11 Improve IBF Size

The following graph shows the probability that the �rst IBF does not decode.
The simulation was done against the original code without any changes to the
code concerning the performance.

Figure 6: Graphical representation of the original IBF decoding failure rate

The most obvious items in this graph are the four plateaus in the graph.
The plateaus can be explained by the nature of how the number of IBF buckets
is de�ned in the original implementation. The number of buckets is de�ned
as estimated set size di�erence multiplied by the IBF factor. This is rounded
up to the next larger power of two (...1024, 2048, 4096...). This logarithmic
gradation was probably implemented in the initial implementation for simplicity
and needed to be corrected to allow a more granular de�nition of the IBF sizes.
It is unclear why this was implemented this way.

The implementation was adjusted so that the IBF factors could be passed
as exact discrete numbers.

Plotting the new implementation that does not round up to the next power
of two results in the following graph:

24

Figure 7: Graphical representation of the IBF decoding failure rate without
logarithmic steps

This plot looks more like what would be expected. What can be clearly seen
are the signi�cantly increased error rates for factors 2, 3, 4, 5, 6, 7, and 8. This
is best explained by the fact, that when the estimate is multiplied by integer
factors, there is an increased probability and for numbers two, four, six, eight
(multiplicative of two), there is even exclusively an even sized IBF. For IBFs
of even size the probability that the IBF multiple is not decoded is increased.
This assumption is supported by an additional experiment in which the size of
the IBFs was made odd by a binary or (| 1):

25

Figure 8: Graphical representation of the IBF decoding failure with an odd
number of buckets

This graph looks exactly as expected and supports the assumption that IBFs
of odd sizes give signi�cantly better results.

The implementation was adapted by the two changes described, so that the
performance parameter study in the section 4 can be carried out with discrete
numbers.

3.12 Check Bucket Falsely Classi�ed as Pure

An additional check was introduced to ensure that in case a bucket is falsely
classi�ed as pure when processing the Inquiry message, a role change must take
place and an IBF must be received.

26

4 Performance Tests

The performance measurement is focusing primarily on the �di�erential syn-
chronisation� operation mode, because the �full synchronisation� mode always
has an easily predictable cost given the number of elements and their average
size.

There are two tuning parameters for which a suitable value must be found:

� The factor that the set size di�erence estimate is multiplied with, which
then de�nes the number of buckets the IBF is created with.

� The IBFs k value, which de�nes the number of buckets an element is
mapped to.

Given these tuning parameters, the protocol then needs to additionally compute
the relative set di�erence. The set di�erence must be as precise as possible and
is calculated with a Strata Estimator. Improvements on the Strata Estomator
can be found in section 3.4.

For all of these values, the following performance indicators should be mea-
sured:

� The probability in percentage the IBF does not decode successfully.

� The round trips used for the protocol.

� The bytes transmitted for the synchronisation.

� Accuracy of the set size di�erence estimation.

4.1 Goals

The main goal of the performance tests is to �nd the optimal parameter (number
of buckets and number of buckets per element) for the IBF generation and
�nd the optimal threshold to decide whether full synchronisation or di�erential
synchronisation is to be prefered.

The number of buckets in an IBF should be de�ned by a factor multiplied
by the estimated set size di�erence, so the number of buckets should be de�ned
as a linear function. Due to the structure of the algorithm, it seemed obvious
from the beginning that it could be a linear function. However, the hypothesis
that it is a linear factor was to be proven experimentally.

The number of buckets per element should be de�ned as a discrete positive
integer.

The threshold de�ning the mode of operation should be adjustable by a user
input de�ning a tradeo� between bandwidth and round trips (bytes/RTT).

27

4.2 Test Sets Generation

To do performance tests it is vital to be able to randomly generate two sets
of elements. The set generation function needs to take as input the size of set
1, the size of set 2, the numbers of elements that are the same in both sets
(overlap) and the size of an element. This function should then return two sets
of elements which ful�ll the de�ned parameter.

The functions de�nition:

Algorithm 5 Code to generate single random element

Input:

number_of_bytes : The desired size of the element

Output:

element : Pointer to the random generated element

FUNCTION generate_random_element (number_of_bytes)

*element = MALOC(number_of_bytes)

SECURE_RANDOM_BYTE_GEN (element, number_of_bytes)

RETURN element

END FUNCTION

28

Algorithm 6 Code to generate two random sets with given overlap
Input:

overlap : Number of elements that overlap in the set

s1_size: Number of elements total in set 1

s2_size: Number of elements total in set 2

e_size: Byte size of a single element

Output:

sets to run set reconciliation algorithm against

FUNCTION initRandomSets (overlap, s1_size, s2_size, e_size)

set1 = {}

set2 = {}

// Add overlapping elements to both sets

WHILE o_ctr < overlap DO

o_ctr = o_ctr + 1

element = generate_random_element (e_size)

add_element_to_set (set1, element)

add_element_to_set (set2, element)

s1_size = s1_size - 1

s2_size = s2_size - 1

END FOR

// Add other elements to set 1

WHILE set1_size > 0 DO

element = generate_random_element (e_size)

add_element_to_set (set1, element)

s1_size = s1_size - 1

END WHILE

// Add other elements to set 2

WHILE set2_size > 0 DO

element = generate_random_element (e_size)

add_element_to_set (set2, element)

s2_size = s2_size - 1

END WHILE

RETURN (set1, set2)

END FUNCTION

For the generation of the elements a secure pseudorandom number generator
(CSPRNG) is required to ensure the statistically independence of each element.
The full function can be found in the GNUnet Git3 repository.

3the GNUNET_CRYPTO_random_block function in the �le /src/util/crypto_random.c
in the [4]

29

4.3 Measure the Round Trip Time (RTT)

For the protocol, the calculation of round trips for the protocol can be easily
achieved by looking at the state diagram and counting the side switches of the
messages:

Figure 9: Analysis of the protocol steps based on the protocol statemachine.

The amount of RTTs used for a reconciliation depends on the synchronisation
mode used and which side has the bigger set.

In optimal conditions the di�erential operation mode needs 3.5 RTTs and
every IBF that fails to decode adds another 0.5 RTT (3.5 + x * 0.5). When x
is the number of failed IBF decoding tries.

In case it is more favourable to request the initializing peer's set, the full
synchronisation mode needs a total of 2.5 RTTs, and 2 RTTs otherwise.

30

With this knowledge a simple pseudocode function can be used to calculate
the RTT used:

Algorithm 7 Code to calculate RTTs used
Input:

moo : Which mode of operation is used

switch_number : Active/passive switches required in

differential mode

Output:

Returns the number of RTTs used

FUNCTION get_rtt(moo, switch_number)

IF moo == �FULL_SYNC_LOCAL_SENDING_FIRST� THEN

RETURN 2.5

ELSE IF moo == �FULL_SYNC_REMOTE_SENDING_FIRST� THEN

RETURN 2.5

ELSE

RETURN 3.5 + (0.5 * switch_number)

END IF

END FUNCTION

31

4.4 Measure the Bandwidth

Measuring the bandwidth is straight forward: the size of every message that is
transmitted needs to be stored and then summed up to a total.

For some analysis it is interesting to �lter just outgoing-, incoming or mes-
sages of a speci�c type, so it is a good idea to store the messages individually
and sum them up in the end.

To determine the bandwidth, it is necessary to record how many messages of
which type are sent and received by both peers. In addition, the variable share,
if any, is added up for each message. If this data is available, the bandwidth
can be easily determined with the following formula.

bandwidth = (numbermessages × sizeheader) + variablebytes (2)

Figure 10: Formula to determine bandwidth of a single message

To capture the entire bandwidth, the bandwidth of all messages can be added
up. The header sizes are static and can be taken from the table below:

Message Type Bytes

IBF 16
OFFER 4

DEMAND 4
INQUIRY 12

REQUEST_FULL 20
SEND_FULL 20

FULL_ELEMENT 8
STRATA_ESTIMATOR 13

DONE 4
FULL_DONE 4
ELEMENTS 8

Table 6: Static header sizes

32

4.5 Performance Tests

In the following section the performance tests are described in detail:

4.5.1 Strata Estimator Estimation Distribution

It is important to understand how good the estimation of the set di�erence is,
because a good estimation is the basis of all performance optimisations. See
section 4.5.3.

To measure the precision of the Strata Estimator implementation, the esti-
mation is run 12 000 000 iterations with two sets which contain 5000 elements
and have an overlap of 450 elements and plot the distribution:

Figure 11: Graphical representation of the distribution of the Strata Estimator
estimation

The distribution graph shows the deviation of the estimation from the real
set di�erence.

The actual set di�erence in this case was 9100 (2x5000-2x450) elements. The
mean over the 12 000 000 iterations shows a slight left shift and three normal
distributed looking curves stacked over each other. This is what was expected:

The left shift means that the Strata Estimator has the tendency making
a slight underestimation of the set di�erence. This can be explained by the
inner working of the decoding of the Strata Estimator. Since starting decoding

33

the IBFs, in the Strata Estimator which contains the smallest share of the
elements and continuing decoding with IBFs containing more elements until no
further IBF can be decoded. Then the set size di�erence can be estimated on
basis of the successfully decoded IBFs. It is easy to understand that the set
di�erence is often underestimated because bigger, only partly decoded IBFs are
not honoreed. This explains why there are three visible sub curves (Actually,
even more, but they are not visible in the graph because they are to �at) and
every curve is shifted less to the left. The curves originate from the fact that
not for every experiment the last successfully decoded IBF is of the same order.
In this case most of the iterations were distributed over three di�erent orders.
The smallest and densest curve is the IBF with the smallest order.

4.5.2 IBF Parameter Study

An IBF should be generated to be as small as possible to save bandwidth. The
failure rate should be low to save RTT and bandwidth. These two targets are
partly contradictory (larger IBF ⇒ lower failure rate but larger IBF ⇒ more
bandwidth).

The size (number of buckets) an IBF needs, is de�ned by a factor (we eval-
uated the range 0-10) of the estimated set size di�erence.

The number of buckets mapped per element (k) (we evaluated the range
1-10) de�nes how often a single element is mapped to the IBF. A higher value
can increase the chances to get a pure bucket, but a too high value decreases
the probability of getting pure buckets. This sounds counter intuitive, but it is
easy to understand. Ex.: When mapping an element just once on the IBF, the
chance that it is not possible to decode the IBF is very high, because only one
other element is needed to be mapped on the same bucket and the IBF remains
undecodable. The other extreme would be to map every element 10 times to
the IBF, in this case the probability every bucket will be hit at least two times
is very high and this leaves the IBF undecodable too. So to �nd a good k value
is key.

The other value that is very important to optimize, is the IBF Factor. This
factor is multiplied with the estimated set size di�erence, which results in the
number of buckets the IBF is build with.

The following graph shows the probability that the �rst IBF does not decode
for k=2-10 (k=1 was omitted on the following graphs because the protocol
hardly worked anymore and made the graphs unreadable).

The performance of the original implementation corresponds to the point on
the plot below, line k=4 and IBF factor 2. Subject to changes in the section
3.11.

34

Figure 12: Graphical representation of the IBF decoding failure with odd num-
ber of buckets

It clearly shows that the k value of 3 is the best for each factor in terms of
error probability. Regarding the IBF hash factor, as expected, the larger the
factor, the smaller the error probability.

In addition to the error probability, the consumed bandwidth is also a deci-
sive criterion for the transmission of the IBF.

35

Figure 13: Graphical representation of bytes transmitted by di�erent IBF sizes
(IBF only)

In this graph, it can be seen that the k value of 3 is always optimal for
the bandwidth. In addition, it can clearly be seen that a factor of around 2 is
optimal when k is 3 for the bandwidth.

For connections with increased latency, the average round trips used are also
decisive for the performance in addition to the bandwidth.

36

Figure 14: Graphical representation of RTTs required by di�erent IBF sizes

This graph shows the average number of round trips per k value and IBF
factor. There is no surprise here either: the k value of 3 seems to be optimal in
terms of round trips. For the IBF factor, the larger the IBF, the fewer round
trips are needed. This is easy to explain:

For the k value to generate the IBF, after looking at these graphs, it clearly
shows that the best value is 3. For the IBF factor, it is not so clear. The
question has to be answered, if a static IBF factor is su�cient in all situations
or if it has to be adjusted due to the quality of the connection between the two
peers.

To answer this question, �ve possible peer-to-peer connections scenarios were
de�ned.

To calculate the latency, a physical distance, the distance between Bern and
Frankfurt was assumed, 420km[14].

37

According to pingman.com, data packets can be assumed to move forward
at about 192,000km/s:

�The distance the data is traveling. Data travels at (very roughly)
120,000 miles (or 192,000 kilometers) per second, or 120 miles (192
km) per ms (millisecond) over a network connection. With tracer-
oute, we have to send the data there and back again, so roughly 1
ms of latency is added for every 60 miles (96km, although with the
level of accuracy we're using here, we should say '100km') of distance
between you and the target�[15]

Using this example to calculate the latency between Bern and Frankfurt, it can
be seen that a data packet takes about 4 ms.

In addition, the latency varies depending on the modem type:

�The latency of the connecting device. For a cable modem, this
can normally be between 5 and 40 ms. For a DSL modem this
is normally 10 to 70ms. For a Dial-Up modem, this is normally
anywhere from 100 to 220ms. For a cellular link, this can be from
200 to 600 ms. For a T1, this is normally 0 to 10 ms�[15]

The following graphs were generated with the following parameters:

Type Bandwidth Modem
latency[2]

Total
latency

Bandwidth-
latency-
tradeo�

Datacenter 10Gb/s 5ms 9ms 1,111,111,111
Fiber to the
home (FTTH)

1Gb/s 10ms 14ms 71',428,571

DSL Fast 100mb/s 35ms 39ms 2,564,102
DSL Slow 10mb/s 35ms 39ms 256,410
Dial-Up 128kb/s 151ms 155ms 825

Table 7: Testcases de�ned to determinate practical impact of measurements

38

To calculate the optimal IBF factor for all �ve connection types, a graph
is drawn for each type with the milliseconds required to execute the protocol
plotted on the Y-axis

The milliseconds spent are calculated for each slice of 0.1 IBF factor using
the following formula:

ar: Average round trip time used
lr: Total latency as stated in the table above
ab: Average bytes required for reconciliation
bs: Bytes transmitted per ms

t = ar × lr +
ab

bs
(3)

Figure 15: Function to calculate milliseconds used for di�erent testcases

Three di�erent lines are plotted, the red line showing how much time was
spent transferring the data, the green line showing how much time was spent
on round trips, and a blue line showing the data from the red and green lines
added together.

39

Figure 16: Graphical representation of milliseconds used for reconciliation in
Datacenters, FTTH, DSL Fast, DSL Slow and Dial-Up (from left to right, from
top to bottom)

The plot for the data center clearly shows that the bandwidth is so high
that the number of bytes transferred has practically no in�uence on the total
time spent and practically only the number of round trips counts. Therefore,
the larger the IBF, the better. Fewer RTTs are needed, which have the greatest
in�uence on the time spent. From an IBF factor greater than 2, no signi�cant
improvement can be seen.

40

With a home �ber connection, it can be seen that a larger proportion of the
total time must be spent on transferring the data. The optimal IBF factor for
the �ber is approximately 2, since the total time spent is lowest with this factor.

With DSL Fast connections, it becomes apparent for the �rst time that for
a factor of less than ten, the time that has to be spent on transferring data
exceeds the time consumed by the round trips. This results in an optimal
plateau between the factors 1.5 and two.

This trend continues with DSL Slow connection. The used round trips be-
come less important compared to the time that must be spent to transfer the
data. Here it becomes clear that a value of 2 and less is optimal to achieve the
shortest possible transmission time.

With a Dial-Up connection, this trend continues, the time for the RTTs
becomes less important and the time to transmit data becomes practically the
sole in�uencing factor. This type of connection is very uncommon today and
can be neglected for our considerations.

What can be said about the IBF factor, is that the larger the bandwidth,
the more crucial it becomes to save round trips. In a peer-to-peer network
today, it can be assumed that the average internet connectivity in developed
countries for home internet connections is between 10mb/s and 100mb/s [3] and
it can be assumed that most servers have 1Gb/s connectivity. Therefore, this
implementation focuses on FTTH, DSL Fast and DSL Slow type connections.
It is clear from the graphs that a value between 1.5 and 2 is optimal for these.

According to the IT trade magazine IT-Daily, the bandwidth for private
connections has increased by up to 147% since 2017.

�Bei dem Vergleich dieser Top-25 Geschwindigkeitslaender zur
Veränderung der Geschwindigkeit seit 2017 scha�t es Deutschland
immerhin auf Platz 18 - 31% Besserung sind hier zu verzeichnen,
waehrend Spitzenreiter Taiwan eine 147% Verbesserung verbuchen
kann.�[16]

Quote translation:

�In the comparison of these top 25 internet speed countries on
the change in speed since 2017, Germany still makes it to 18th place
-31% improvement is recorded here, while frontrunner Taiwan can
record a 147% improvement.�

Since bandwidth is expected to continue to increase in the future and it is not
a short-term trend, the in�uence of bandwidth will become less and less the
decisive factor and round trip time will become more important.
Based on all these measurements, an IBF factor of 2 is future-proof and behaves
almost optimally for all relevant connection types.

The original work of Eppstein largely aligns with the results of our experi-
ments with the optimized implementation. In these experiments, in contrast to
the original work of Eppstein, it could not be determined that for set di�erences
smaller than 300 elements a k value of 4 would be better:

41

�In practice, a simple rule of thumb is to construct an IBF in
Phase 2 with twice the number of cells as the estimated di�erence to
account for both under-estimation and IBF decoding overheads. For
estimates greater than 200, 3 hashes should be used and 4 hashes
otherwise.�[3]

4.5.3 Di�erential vs. Full Mode

One of the most important performance in�uencing factors is the choice between
di�erential and full mode of operation.

This question is about whether it is more e�cient to transmit the entire set
or to determine the set di�erence and transmit only the missing elements.

An additional possibility with full synchronisation is, that it is more e�cient
to request the elements from the other side, instead of transmitting the elements
to the other peer. This makes sense when the additional half round trip that
is required to request the set from the other peer. This is especially bene�cial
if round trips are much cheaper than bandwidth and more elements of the
estimated di�erence are at the other peer.

The previous implementation of the Strata Estimator in GNUnet did not
have the functionality to estimate on which side of the peer-to-peer operation
how many elements of the di�erence are.

Therefore, the implementation had to be extended accordingly:
When decoding the IBFs of the Strata Estimator, it had to be additionally

stored on which side the element has decoded (1/-1). This ratio can be used to
estimate how many elements are missing on one side and on the other side.
To decide which mode is optimal, a function must be written that can estimate
how much bandwidth will be used for the operation, based on the input pa-
rameters: Average element size, local and remote set sizes and local and remote
set di�erence to estimate how much bandwidth will be used for the operation.
Furthermore it should be possible to specify a bandwidth latency tradeo� which
de�nes how many bytes an additional round trip should cost. This is necessary
so that the protocol can be adapted and optimized for di�erent applications.
In order to be able to carry out these calculations, various constants are also
required. For example the message sizes, which can be taken from the RFC in
the Appendix B - RFC.
The exact implementation can be found in the RFC as pseudocode, or the con-
crete implementation can be found in the GNUnet Git [4] repositories. The
developed pseudocode is included as a Python script in this work.

To verify the estimates of the written algorithm and to estimate how precise
they are, 10'000 simulations were performed, and the actual bytes transferred
were compared with the number of bytes estimated by the algorithm.

Five experiments were made with di�erent set size di�erences:

42

Ex 1 Ex 2 Ex 3 Exp 4 Ex 5

Set size 1 5000 5000 5000 5000 5000
Set size 2 5000 5000 5000 5000 5000

Sets Overlap 0 1250 2500 3750 4500
Sets Overlap in % 0 25 50 75 90

Di�erence 10000 7500 5000 2500 1000
Strata 9850 7367 4929 2470 984
RTT 3.656 3.649 3.628 3.619 3.614

Strata/RTT 39.033 38.065 36.217 35.416 34.995

Total bytes
Simulation 2'372kb 1'708kb 1'177kb 584kb 233kb
Estimated 2'309kb 1'732kb 1155kb 577kb 231kb

IBF bytes
Simulation 384kb 280kb 178kb 87kb 34kb
Estimated 349kb 262kb 175kb 87kb 35kb

Deviation predict./sim. 63kb -24kb 22kb 7kb 2kb
%-Deviation predic./sim. 2.713 -1.366 1.932 1.201 0.904

Table 8: Accuracy comparison table of new algorithm

The deviation of the algorithm's estimate from the average across all simu-
lations is very precise, ranging from 2.71% to -1.366%.

It is noticeable that the number of RTTs needed for the operations is very
constant at 3.6, no matter how large or small the set di�erence is.

The fact that the strata estimation is always slightly lower than the e�ective
di�erence is due to the way the Strata Estimator works and is expected. How-
ever, this bias is compensated by the experimentally derived factors used in the
implementation.

4.6 Results

Since part of the work is to measure and quantify performance improvements.
At the beginning of the project the initial performance of the implementation
was measured and at the end, the achieved improvement was measured by an
identical simulation. The results were presented in the following plots.

All graphs used for measuring the code improvements were made with two
sets, each containing 500 elements at 32 bytes and having an overlap applied
on the X-axis. The resolution of the graph is such, that the less improved "Full
Synchronisation Mode of Operation" contains measurement points in increments
of 100 (0,100,200,300,400). The interesting section, which was improved by
applying mainly the "Di�erential Synchronisation Mode of Operation" contains
measuring points in steps of 10 (410,420,430,440,450,460,470,480,490). Each of
these measurement points is the average value over 10'000 simulations.

43

Figure 17: Graphical representation of bandwidth improvements through new
implementation with di�erent set di�erences. Bandwidth-latency-tradeo� set
to 10,000 bytes/round trip.

In this �rst graph, it can be seen in green the original implementation and
in blue the improved implementation. This graph shows on the Y-axis the total
bandwidth of the operation required at a certain set overlap to synchronise the
two sets of peers.

It is easy to observe that the new implementation of di�erential synchro-
nisation has signi�cant bandwidth savings over the old implementation, and
approaches the optimal �linear� behavior across the entire spectrum of set dif-
ferences. This is quanti�ed again in the table below in exact number of bytes
and percentages.

An indication that the algorithmic estimation of the set sizes is very precise,
is that the graph of the new implementation does not show a signi�cant increase,
when switching between full and di�erential synchronisation, as can be clearly
seen with the old implementation.

44

Set Overlap Old Implementation New Implementation Di�erence in %

0 32008 32010 0%
100 29608 29610 0%
200 27208 27210 0%
300 24825 24817 0%
400 22623 22451 -1%
410 22761 22251 -3%
420 23845 22044 -8%
430 27194 21910 -20%
440 37821 22090 -42%
450 36161 22924 -37%
460 30549 20115 -35%
470 20182 15033 -25%
480 14691 10053 -32%
490 7206 5047 -30%

Table 9: Numerical representation of bandwidth improvements through new
implementation with di�erent set di�erences

The new implementation results in bandwidth savings of 20% to 42% in
cases, where the set di�erence is small, which is a massive improvement of the
protocol in terms of the bandwidth used.

In addition, in this simulation the di�erence of the elements were equally
distributed to both peers, if this would not have been the case (as it would be
very often in reality) the new implementation would be superior to the old one,
even in full synchronisation in 50% of the cases, because it can estimate in which
cases it is worth requesting the set from the other peer.

The second important aspect of measuring performance is the road trips
needed to synchronise the two sets. The following graph shows the required
RTTs for the complete synchronisation of the two sets.

45

Figure 18: Graphical representation of RTTs improvements through new im-
plementation with di�erent set di�erences. Bandwidth-latency-tradeo� set to 0
bytes/round trip.

What might be surprising at �rst glance, is that the new implementation is
not always better. For example, it always seems to be 0.25 RTTs worse in full
synchronisation. But this can be explained very easily, because for these tests
the algorithm for the choice of the "Mode of Operation" was con�gured so, that
the "bandwidth-latency-tradeo�" was 0. Therefore, in 50% of the simulations
the protocol needs an additional 0.5 RTTs, which could easily be avoided by
setting the bandwidth latency tradeo� di�erently.

If the "Bandwidth Latency Tradeo�" is increased from 0 to 10'000, which
means that 1 roundtrip is worth 10'000 bytes, a di�erent picture emerges:

46

Figure 19: Graphical representation of the round trips. Bandwidth-latency-
tradeo� set to 10,000 bytes/round trip

As can be clearly seen in the graph above, the new implementation is in
any case superior to the old one in terms of the number of round trips and
consistently delivers better results than the old implementation.

Also, the optimisation of the parameters to generate the IBF with the new
algorithm is less aggressive, this saves a lot of bandwidth on one side but on
the other side it consumes a bit more RTTs. This deterioration is worth it in
the vast majority of cases, because the bandwidth savings are correspondingly
large.

What is surprising is that the new algorithm seems to be better in the middle
range (430-450) despite the very lax IBF parameters regarding RTTs. This can
be explained by the fact that in the old implementation the switch between full
and di�erential synchronisation was forced too early and way too aggressive.

47

Figure 20: Old implementation probability for choosing between mode of oper-
ations by set di�erence.

Figure 21: New implementation probability for choosing between mode of op-
erations by set di�erence. Bandwidth-latency-tradeo� set to 0 bytes/round trip
(left) and 10,000 bytes/round trip (right)

To support the assumption regarding the additional 0.25 round trips, the
percentages ratio of the used mode of operations were also plotted in two graphs.
In these graphs, as in the previous graphs, the set di�erence is shown on the
X-axis and the percentage distribution is shown on the Y-axis. The blue line
shows the percentage of di�erential synchronisations, the green line shows the
percentage of full synchronisations, where the local elements were sent to the
remote peer �rst and the red line shows the percentage, where the elements were
requested by the remote peer.

This con�rms the assumption that the additional 0.25 RTTs come from the
two di�erent full modes.

48

5 Security

In the security section of this document, the most important security improve-
ments of the protocol are described and justi�ed.

5.1 Attacker

Before considering how to make a protocol more secure, one must consider
what the targets of an attacker might be. Only when these targets are known
appropriate protective measures can be considered. The following targets were
identi�ed for this work:

� The attacker wants to consume maximum bandwidth.

� The attacker wants to consume maximum round trips.

In both cases the attacker basically wants to ensure that the synchronisation
cannot be completed, but strings along the other party to maximize resources
spent. This is an attack, as the other party may have limited resources and may
miss deadlines or other more productive interactions as a result. Thus, in this
work, the attacks in which the attacker tries to waste the peer's resources are
to be made more di�cult. Note that the attacker can always force the protocol
to fail by simply stopping to participate or detectably not following the rules.
Alas, in that case, the other peer can simply give up and will not waste its
resources on the interaction with the attacker.

49

5.2 Validate Message Received in Correct Phases

To harden the protocol against attacks, controls were introduced in the improved
implementation that check for each message whether the message was received
in the correct phase. This is central so that an attacker �nds as little attack
surface as possible and makes it more di�cult for the attacker to send the
protocol into an endless loop, for example.

To achieve this, when a message is received, it is checked whether this mes-
sage is allowed in the current phase. For this purpose, a function was written
that functionally corresponds to the following pseudocode:

Algorithm 8 Algorithm determinating if a message is received in valid phase
Input:

allowed_phases : A list containing all phases in which

the message can be received

phase : The phase in which the protocol is in

Output:

Returns 0 if message is valid in phase and -1 if not

FUNCTION check_valid_phase (allowed_phases, phase)

FOR allowed_phase IN allowed_phases DO

IF allowed_phase == phase THEN

RETURN 0

END IF

END FOR

RETURN -1

END FUNCTION

To determine which message is allowed in which phase, the state diagram
described in section 3.3 can be consulted.

50

5.3 Message Control Flow

Another key point to minimise the attack surface on the di�erential mode of
operation of the protocol is to check that no message has been received twice,
that no replies to messages are missing or that messages are received that do
not follow the protocol message �ow. The four possible checking conditions can
be seen in the schematic diagram below:

Figure 22: Message Flow Control schematic diagram

The following rules are checked by the Message Control Flow:

1. For each "Demand" message sent, exactly one "Element" message must
be received. This applies because the remote peer has committed itself in
advance with its "O�er" message that the o�ered element is in his set.

2. For each "Inquiry" message sent, a maximum of one "O�er" message shall
normally be received. However, since the "Inquiry" message is an 8-byte
hash, collisions may occur. But this should be rather rare. Nevertheless,
it can not be assumed that collisions never occur and therefore not that
an inquiry is unique.

3. For each "O�er" message sent, a maximum of one "Demand" message
shall be received.

4. No "Element" message shall be received or requested for which no O�er
(red arrows in the diagram) or Demand has been sent or received.

51

The chaining of the messages is realised for the O�er, Demand and Element
messages via the hash. The hash is contained in the messages and is unique
(Except the hash in the "Inquiry" message, because it is only 8-byte (64-bit) long
and not like the hashes in the other messages, which are 64-byte (SHA-512[17])
long and therefore with cryptographic security unique). It is more complicated
with the "Inquiry" message, as this only contains the IBF key of the requested
message, but not the hash. With the "Inquiry" message, the requested IBF
key must be stored and as soon as an O�er message is received, it must be
determined which IBF key the O�er represents. The following pseudocode is
used to check this chaining (next page).

52

Algorithm 9 Function to control the message flow

Available message states and numerical representation:

0 - MESSAGE_EMPTY: This message has never been sent or received

1 - MESSAGE_SENT: This message has been sent to other peer

2 - MESSAGE_EXPECTED: This message is expected to be received

from other peer

3 - MESSAGE_RECEIVED: This message has been received

Inputs:

hash_map : A hashmap containing for every processed hash an dictionary

with entries for all message types (mt) and the given state (new_state)

mt : Message type that needs to be updated. Eg. OFFER_MESSAGE

new_state : New message state to set the dictionary of the hash to

hash_code : The hashcode that needs to be processed

Outputs:

Returns -1 if action is not allowed and 0 if action is in

accordance with the protocol

FUNCTION message_control_flow (hash_map, mt, new_state, hash_code)

cfe = hash_map.find(hash_code)

IF (OFFER_MESSAGE == mt) THEN

state = cfe.offer

ELSE IF (DEMAND_MESSAGE == mt) THEN

state = cfe.demand

ELSE IF (ELEMENT_MESSAGE == mt) THEN

state = cfe.element

IF ((new_mcfs != MESSAGE_SENT) &&

(MESSAGE_RECEIVED != cfe.offer)) THEN

RETURN -1

END IF

IF ((new_mcfs != MESSAGE_SENT) &&

(cfe.demand != MESSAGE_SENT)) THEN

RETURN -1

END IF

ELSE

RETURN -1

IF new_state <= state THEN

RETURN -1

END IF

hash_map.insertOrUpdate(hash_code,cfe)

RETURN 0

END FUNCTION

53

5.4 Limit Active/Passive Switches in Di�erential Synchro-
nisation

One of the most important security improvements of the protocol is the limi-
tation of the maximum allowed active/passive switches during di�erential syn-
chronisation. The original implementation did not have a limit. By limiting the
maximum rounds, an attacker is strongly limited. This is central to the security
of the protocol as an adversary could easily send an IBF that fails to decode,
forcing the victim into an endless decoding cycle.

Since it is a question of probabilities how many active/passive switches are
needed to match the sets, it is important to determine at the beginning how
large the probability is in each round that the decoding of the IBFs fails and
another round is needed. In order to determine this probability, ~10,000,000
simulations were carried out with the improved implementation and parameters
found in this work.

Active/Passive
switches

Number of
experiments

share in
%

share in % compared
last round

Total 10099993 100% -

0 7,849,529 78% -
1 1,926,568 19% 24.5%
2 261,521 2.6% 13.6%
3 47,253 0.47% 18%
4 14,972 0.15% 31%
5 149 0.0015% 1%
6 1 - <1%

Table 10: Measurement data for determinating average IBF-Decoding error rate

This table shows that the probability of an active/passive switch is 1%, 1%,
13%, 18%, 25%, 31% the average of these value is 14.83%. This is consistent
with the measurements shown in the 4 section of this paper. It can be assumed
that the probability of decoding each round is around 15%, i.e. the probability
of failing to decode an IBF for n rounds can be approximated with the following
formula:

probability = 0.15n (4)

Figure 23: Formula to calculate probability of failure in the n-th round

Through probability calculation, one can detect that one is interacting with
an attacker by showing that the number of rounds of decoding failures is too
improbable to happen in benign situations.

54

The number of rounds after which the operation can be aborted (and it can
be assumed with a de�ned security level that the other peer is not performing
the protocol correctly) can be calculated with the following formulae.

(0.15)numberOfRounds =
1

2securityLevel
(5)

This can then be transformed to calculate the required rounds:

numberOfRounds = 0.3653681× securityLevel (6)

Or transformed to determine the safety level for a given number of rounds:

securityLevel = 2.73697× numberOfRounds (7)

Figure 24: Formulae to determinate level of con�dence to detect malicious peer

From these formulae, the numbers of rounds for the given safety levels are
shown in the table below:

Security Level in Bit Rounds

0 0
10 4
20 8
30 11
80 30
128 47
256 94

Table 11: Table representing level of con�dence to detect a malicious peer

The de�nition and rationale for the security level chosen for the implemen-
tation can be found in the section5.8.

5.5 Full Synchronisation Plausibility Check

If the di�erential synchronisation mode of operation has been limited by restrict-
ing the maximum number of active/passive switches, the full synchronisation
mode remains open for an attack. Although this is less demanding in terms of
CPU time, full synchronisation of large sets can place a signi�cant load on the
network.

An attacker can try to use up a peer's bandwidth by pretending that the peer
needs full synchronisation even if the set di�erence is very small and the attacker
only has a few (or even zero) elements that are not already synchronised.

In such a case, it would be ideal if the plausibility could already be checked
during full synchronisation as to whether the other peer was honest or not with

55

regard to the estimation of the set size di�erence and thus the choice of Mode
of Operation.

In order to calculate this plausibility, the formula (9) was developed, which
depicts the probability with which one can calculate the corresponding plausi-
bility based on the number of new and repeated elements after each received
element.

rs: Estimated remote set di�erence
lis: Local initial set size / Number of elements in set
rd: Received duplicates / Number of duplicated element received
rf: Received fresh / Number of fresh elements received

probability = (1− rs

lis+ rs
)rd−rf(lis

rs) (8)

Figure 25: Formula to determinate if elements received are plausible

This formula is plausibilised with the following example calculation, for
which "Estimated Remote Set Di�erence" 490 and for the "Locale Initial Set
Size" : 5 was chosen.

Step Duplicate received
elements

Fresh received
elements

Probability

1 0 0 1
2 0 10 1.6
3 1 98 1
4 2 150 0.11
5 3 290 0.82
6 5 490 1

attack 13 0 1.13× 1025 ≈ (1
280)

Table 12: Simulation of the plausibility check formula

In this calculation example, one can see in steps 1 and 6 that both at the
beginning and at the conclusion of the operation, the "probability" is 1. This
is correct because the values at this point are 100% plausible. This is also
re�ected in step 3, where the plausibility is also 1, since 98 is exactly 1/5 of
490. The remaining steps also behave as expected. They are above 1 if a
disproportionately large number of new elements were received and below 1 if
a disproportionately large number of duplicated elements were received. The
attack example shows that an attack can already be detected after 13 received
elements with a probability of two to the power of 80. One problem with this
approach is that it relies on the elements being received in randomised order.
This was not the case in the original implementation. For this reason, the
existing implementation had to be modi�ed so that the elements are now sent
in randomised order. A corresponding security level was determined for the

56

probabilistic approach. The discussion on this can be found in Section 5.8.
Besides this approach from probability theory, there is an additional check

that can be made. After the entire set has been transferred to the other peer,
no known elements may be returned by the second peer, since the second peer
should only return the elements that are missing from the initial peer's set.
These two approaches are given here in the pseudocode:

Algorithm 10 Function to verify the plausibility of full

syncronisation mode of operation

Input:

SECURITY_LEVEL : The security level used e.g. 2^80

phase : The statemachine phase

rs : Estimated Remote Set Difference

lis : Number of elements in Set

rd : Number of duplicated element received

rf : Number of fresh elements received

Output:

Returns 1 if full sync is plausible and -1 otherwise

FUNCTION full_sync_plausibility_check (phase,rs,lis,rd,rf)

security_level_lb = 1 / SECURITY_LEVEL

IF (PHASE_FULL_SENDING == phase) THEN

IF (rd > 0) THEN

RETURN -1

END IF

END IF

IF (PHASE_FULL_RECEIVING == phase) THEN

IF (0 <= rs) THEN

rs = 1

END IF

base = (1 - (rs / (lis + rs)))

exponent = (rd - (rf * (lis/rs)))

value = POWER(base, exponent)

IF ((value < security_level_lb) ||

(value > SECURITY_LEVEL) THEN

RETURN -1

END IF

END IF

RETURN 1

END FUNCTION

57

5.6 Validate Mode of Operation

Another weakness in the original protocol was that one peer alone can determine
which mode of operation is selected for the operation. An attacker can take
advantage of this by choosing a mode that is as unfavourable as possible. The
other peer then has no way of checking whether this decision was correct.

To solve this problem, the algorithm described in section 4.5.3 and in the
RFC in the Appendix B - RFC is executed on both sides with the same pa-
rameters. This ensures that an attacker can only choose a mode of operation
that is compatible with the previously de�ned values (which are then used for
all further plausibility checks).

This limits an attacker's ability to waste resources by in�uencing the mode
of operation.

5.7 Byzantine Boundaries

Another way to restrict an attacker is to de�ne an upper and lower bound,
based on prior knowledge, for the number of elements that the attacker could
have. These two values depend on the purpose of the application and should be
passed by the application via the API interface.

The lower byzantine bound can be, for example, the number of elements the
other peer had in his set at the last contact. It is unusual in many cases for the
set to become smaller, at least within a short time.

The upper byzantine barrier can be a practical maximum e.g. the number
of e-voting votes; in Switzerland, no more than 5.5 million votes can ever be
counted (2020) 4 A time-dependent value is also possible, e.g. a maximum
of 500 elements are added every day, in which case the maximum would be
ByzantineUpperBound = DaysSinceLastSync× 500 + SetSizeLastSync.

Due to these two barriers, several checks can be implemented:

� The number of elements that the remote peer declares to have in his set
must never be smaller than the lower byzantine bound.

� The estimated local set size di�erence together with the local set size must
never be higher than the upper byzantine bound.

� The estimated remote set size di�erence together with the remote set size
must also never be higher than the upper byzantine bound.

One problem is that the estimates of the set size di�erence can legitimately be
higher than the real value (in the case of an incorrect estimate). In this case,
the upper Byzantine limit may be exceeded, although in reality this limit was
never exceeded. To prevent this, the implementation has been adapted so that
it is not possible for the remote/local set sizes together with the remote/local
estimated set size di�erence to exceed the upper Byzantine bound.

4https://www.bfs.admin.ch/bfs/de/home/statistiken/politik/abstimmungen/

stimmbeteiligung.html

58

https://www.bfs.admin.ch/bfs/de/home/statistiken/politik/abstimmungen/stimmbeteiligung.html
https://www.bfs.admin.ch/bfs/de/home/statistiken/politik/abstimmungen/stimmbeteiligung.html

The three checks described were implemented as follows:

Algorithm 11 Function to check byzantine boundaries

Input:

rec : Number of elements in remote set

rsd : Number of elements differ in remote set

lec : Number of elements in local set

lsd : Number of elements differ in local set

UPPER_BOUND : Given byzantine upper bound

LOWER_BOUND : Given byzantine lower bound

Output:

returns 1 if parameters in byzantine bounds otherwise

returns -1

FUNCTION check_byzantine_bounds (rec,rsd,lec,lsd)

IF (rec + rsd > UPPER_BOUND) THEN

RETURN -1

END IF

IF (lec + lsd > UPPER_BOUND) THEN

RETURN -1

END IF

IF (rec < LOWER_BOUND) THEN

RETURN -1

END IF

RETURN 1

END FUNCTION

59

5.8 Security Level

An important parameter in the probability-based security algorithms described
above is the security level measured in bits:

�Security Bits estimate the computational steps or operations
(not machine instructions) required to �nd a solution to the problem
in the problem's domain (FF, IF, or EC). For example, if someone
says, 'My system uses 1024 Di�e Hellman', they are really stating
their system has a security level of 80 bits (and because its Di�e
Hellman, the problem domain is �nite �eld). It will take a com-
puter, on average, approximately 2^80 operations to �nd a solution
(think Big-Oh notation). To break Di�e-Hellman via classical dis-
crete logarithms, a number of methods could be employed: Index
calculus, modi�ed Pollard's rho, or Baby-step giant-step to name a
few.�[18]

The minimum security level required to achieve cryptographic security is shifting
as computing power becomes cheaper and cheaper. NIST currently recommends
a minimum security level (by 2030) of 112-bits.[19].

In contrast to the above-mentioned de�nition of security, our de�nition is not
about cryptographic security, but about the probability of a user who adheres
to the protocol being falsely identi�ed as an attacker, i.e. the false positive rate
of the probabilistic algorithms.

For practically all applications, a security level of 1/2^80 should be su�-
cient, even if this is no longer su�cient for cryptographic applications. The
probability here is 1 / 1208925819614629174706176 (2^80). For comparison,
2^80 is 17 times higher than the number of stars in the universe estimated by
astronomers. Which is estimated nearly 70 quadrillions[20]. Thus, a security
level of 80 will be used to �ag interactions with other peers as likely malicious
in our implementation.

If this level of security is not su�cient for an application, it can be adapted
very easily.

5.9 Results

The security improvements aim to limit the possibilities of an attacker to deviate
from the protocol as much as possible, and the false positive dedection rate is
as low as possible. Attacks cannot be prevented completely, but they can be
detected as early and as reliably as possible. It was not the goal to completely
prevent attacks, which is very di�cult in a probability-based protocol either
way.

The improvements made e�ectively limit an attack to a minimum, because it
is no longer possible for an attacker to use up either in�nite rounds in di�erential
synchronisation by manipulating IBFs or to manipulate the protocol by sending
false messages in the wrong phases or to trigger a full synchronisation, even
though the attacker does not have enough new elements.

60

6 Conclusion

6.1 Summary

The aim of this work was to improve the existing implementation in terms of
security and performance and to document it in an RFC.

Important performance improvements achieved through this work are, for
example, massive bandwidth savings in set reconciliation of up to 42%. In the
adapted implementation, it is possible to de�ne a "bandwidth-latency-tradeo�"
depending on the application area, which makes it possible to de�ne a trade-
o� between latency and bandwidth. The newly developed algorithm, which
determines the mode of operation based on various factors, has made it possible
to save bandwidth and round trips for many scenarios.

Importantly, the new implementation limits an attacker more. The attack re-
sistance has been improved through various checks, validations and probability-
based algorithms. An attacker who does not adhere to the protocol can thus be
quickly recognised and excluded in many cases.

The protocol was improved in many places. Some bugs were found and �xed.
For example, the old implementation would not have worked at all for larger sets
with small set di�erences, as the counter of the IBF would have over�owed. To
prevent the counter from over�owing, an algorithm was developed that makes
the counter as compact as possible when it is transmitted over the network.

Another important part of the work was documenting the protocol as an
RFC. This was achieved through the work, the RFC can be found in the Ap-
pendix B - RFC.

6.2 Addressees of the Improvement

The work is primarily intended to contribute to the free software project GNUnet.
The improvements brought in should especially support GNUnet in establishing
GNS5 as an alternative to DNS.

The RFC created should allow alternative implementations to be created for
the Secure Set Reconciliation protocol used at GNS for distributing revocations
that are compatible with the existing implementation.

The improvements and the documentation should help the Secure Set Rec-
onciliation Protocol to be extended and used in other application areas.

5GNU Name System

61

6.3 Future Work

Towards the end of the work, time was running out, not all ideas could be
implemented. There are possibilities to continue that could be addressed in a
future work:

� An improvement that would save round trips and bandwidth, especially
for very small set di�erences (the set di�erence being very small is a very
common case when the sets are often matched). The improvement would
be: Instead of using the elements contained in the IBFs from the Strata
Estimators, only to calculate the set di�erence. One could request the
decoded elements directly from the remote peer or deliver them to the re-
mote peer, depending on which set they are missing. This would minimise
the set di�erence already before the IBF is created and thus reduce the
probability that the decoding fails. If the set di�erence is very small and
therefore the stratum 0 of the Strata Estimator is decoded, the rest of the
protocol could be omitted completely and the sets would be synchronised
between the peers. This improvement has a great potential to have high
additional savings.

� A possible future extension could be to transfer the elements of a very
small set to the other peer directly after the "Operation Request". This
would save bandwidth, round trips and computing time if transmitting
the full set is close in size to the Strata Estimator.

� The implementation for compressing the IBF counter works with 1-byte
words, this could be rewritten to work with 8-byte (64-bit) words to in-
crease e�ciency.

� In the existing implementation, a performance improvement was achieved
by making the size of the IBFs always odd. In a future work, it could be
investigated how the use of prime numbers would a�ect the performance.
It is conceivable that by using prime numbers, the failure rate during
decoding could be further reduced.

� Another way to improve the protocol could be to add a SHA-512 XOR
sum of the reconciled set to the "Done" and "Full done" messages . This
could increase the security that the sets are identical after completion
of the protocol. Whether this is necessary and whether the additional
bandwidth required is worthwhile must be carefully examined.

� It would also be useful to re-perform the measurements made in this thesis
with asymmetric set sizes and larger elements in the set, to validate that
the assumptions made in this thesis are also valid for other set constella-
tions.

� To introduce a check that ensures, that in case of multiple IBF messages
the o�set sent in the IBF-Message is monotonic increasing and a multiple
of the maximal buckets per element.

62

� When receiving an IBF-Last message, three additional plausibiliy checks
could be introduced: One is to ensure that after each active/passive switch
the IBF can never be more than double in size. Another plausibility
check is that an IBF probably never will be larger than the byzantine
upperbound multiplied by two. The third plausibility check is to take
successfully decoded IBF keys (received o�ers and demands) into account
and to validate the size of the received IBF with the in Appendix B - RFC
in the "Operation Mode" section de�ned function "get_next_ibf_size()".

� When receiving an IBF message, a sanity check can be introduced to
ensure that the "OFFSET" message �eld is never higher than the "IBF
SIZE" �eld in the IBF message.

63

7 Indices and References

List of Figures

1 Performance improvements by new introduced IBF size heuristic 10
2 Formula to calculate the max elements in an IBF bucket for the

old implementation . 11
3 Statemachine diagram set union operation 13
4 SE improvements through multiplying salt by 7 / Actual set dif-

ference is 910 . 16
5 Improving estimates with multiple IBFs 18
6 Graphical representation of the original IBF decoding failure rate 24
7 Graphical representation of the IBF decoding failure rate without

logarithmic steps . 25
8 Graphical representation of the IBF decoding failure with an odd

number of buckets . 26
9 Analysis of the protocol steps based on the protocol statemachine. 30
10 Formula to determine bandwidth of a single message 32
11 Graphical representation of the distribution of the Strata Esti-

mator estimation . 33
12 Graphical representation of the IBF decoding failure with odd

number of buckets . 35
13 Graphical representation of bytes transmitted by di�erent IBF

sizes (IBF only) . 36
14 Graphical representation of RTTs required by di�erent IBF sizes 37
15 Function to calculate milliseconds used for di�erent testcases . . 39
16 Graphical representation of milliseconds used for reconciliation

in Datacenters, FTTH, DSL Fast, DSL Slow and Dial-Up (from
left to right, from top to bottom) 40

17 Graphical representation of bandwidth improvements through
new implementation with di�erent set di�erences. Bandwidth-
latency-tradeo� set to 10,000 bytes/round trip. 44

18 Graphical representation of RTTs improvements through new im-
plementation with di�erent set di�erences. Bandwidth-latency-
tradeo� set to 0 bytes/round trip. 46

19 Graphical representation of the round trips. Bandwidth-latency-
tradeo� set to 10,000 bytes/round trip 47

20 Old implementation probability for choosing between mode of
operations by set di�erence. 48

21 New implementation probability for choosing between mode of
operations by set di�erence. Bandwidth-latency-tradeo� set to 0
bytes/round trip (left) and 10,000 bytes/round trip (right) 48

22 Message Flow Control schematic diagram 51
23 Formula to calculate probability of failure in the n-th round . . . 54

64

24 Formulae to determinate level of con�dence to detect malicious
peer . 55

25 Formula to determinate if elements received are plausible 56
26 Initial time line . 73
27 Adapted timeline . 73
28 E�ective timeline . 74

65

List of Tables

1 SE improvements through multiplying salt by 7 15
2 Performance impact IBF bucket number is a prime in Strata Es-

timator . 17
3 Compressed Strata Estimator sizes 17
4 Determinating optimal number of Strata Estimators 18
5 Buggy vs. �xed IBF salt implementation 20
6 Static header sizes . 32
7 Testcases de�ned to determinate practical impact of measurements 38
8 Accuracy comparison table of new algorithm 43
9 Numerical representation of bandwidth improvements through

new implementation with di�erent set di�erences 45
10 Measurement data for determinating average IBF-Decoding error

rate . 54
11 Table representing level of con�dence to detect a malicious peer . 55
12 Simulation of the plausibility check formula 56
13 Risk evaluation table . 72

66

List of Algorithms

1 Determinate next IBF size . 9
2 Salting function IBF/Strata Estimator 15
3 Function to calculate average element size 22
4 Function to determinate minimal IBF counter size 23
5 Code to generate single random element 28
6 Code to generate two random sets with given overlap 29
7 Code to calculate RTTs used . 31
8 Algorithm determinating if a message is received in valid phase . 50
9 Function to control the message �ow 53
10 Function to verify the plausibility of full syncronisation mode of

operation . 57
11 Function to check byzantine boundaries 59

67

References

[1] F. Dold and C. Grotho�, �Byzantine set-union consensus using
e�cient set reconciliation,� vol. 2017, no. 1, p. 14. [Online].
Available: https://doi.org/10.1186/s13635-017-0066-3 1, 2

[2] F. Dold, �The GNU taler system: practical and provably se-
cure electronic payments. (le systeme GNU taler: Paiements
electroniques pratiques et securises).� 1

[3] D. Eppstein, M. T. Goodrich, F. Uyeda, and G. Varghese,
�What's the di�erence? e�cient set reconciliation without
prior context,� in Proceedings of the ACM SIGCOMM

2011 conference, ser. SIGCOMM '11. Association for
Computing Machinery, pp. 218�229. [Online]. Available:
https://doi.org/10.1145/2018436.2018462 1, 2, 4.5.2

[4] gnunet.git - GNUnet core repository. [Online]. Available:
https://git.gnunet.org/gnunet.git/ 1, 3.2, 3, 4.5.3

[5] M. Wachs, M. Schanzenbach, and C. Grotho�, �A censorship-
resistant, privacy-enhancing and fully decentralized name sys-
tem,� in Cryptology and Network Security, ser. Lecture Notes in
Computer Science, D. Gritzalis, A. Kiayias, and I. Askoxylakis,
Eds. Springer International Publishing, pp. 127�142. 1

[6] C. Grotho�, B. Polot, and C. Loesch, The Internet is Broken:

Idealistic Ideas for Building a NEWGNU Network. 2

[7] A. Broder, M. Charikar, A. Frieze, and M. Mitzenmacher, �Min-
wise independent permutations,� vol. 60, pp. 630�659. 2

[8] M. Mitzenmacher and T. Morgan, �Robust set reconciliation
via locality sensitive hashing.� [Online]. Available: http:
//arxiv.org/abs/1807.09694 2

[9] M. Mitzenmacher and R. Pagh, �Simple multi-party set
reconciliation.� [Online]. Available: http://arxiv.org/abs/1311.
2037 2

[10] What are invertible bloom lookup tables? |
dash news. [Online]. Available: https://dashnews.org/
what-are-invertible-bloom-lookup-tables/ 2

[11] M. Goodrich and M. Mitzenmacher, �Invertible bloom lookup
tables,� pp. 792�799. 2

[12] D. P. Kroese and R. Y. Rubinstein, �Monte carlo
methods,� vol. 4, no. 1, pp. 48�58, _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/wics.194.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/
10.1002/wics.194 3.4.1

68

https://doi.org/10.1186/s13635-017-0066-3
https://doi.org/10.1145/2018436.2018462
https://git.gnunet.org/gnunet.git/
http://arxiv.org/abs/1807.09694
http://arxiv.org/abs/1807.09694
http://arxiv.org/abs/1311.2037
http://arxiv.org/abs/1311.2037
https://dashnews.org/what-are-invertible-bloom-lookup-tables/
https://dashnews.org/what-are-invertible-bloom-lookup-tables/
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.194
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.194

[13] Group theory - lagrange's theorem. [Online]. Available: https:
//crypto.stanford.edu/pbc/notes/group/lagrange.html 3.4.1,
3.4.2

[14] Entfernung bern > frankfurt - luftlinie, fahrstrecke, mit-
telpunkt. [Online]. Available: https://www.luftlinie.org/Bern/
Frankfurt 4.5.2

[15] What's "normal" for latency and packet loss? [Online].
Available: https://www.pingman.com/kb/42 4.5.2

[16] S. Parthier. IT studien und analysen. [On-
line]. Available: https://www.it-daily.net/analysen/
16102-internet-geschwindigkeit-weltweit-deutschland-auf-platz-25
4.5.2

[17] S. Gueron, S. Johnson, and J. Walker, �SHA-512/256,� in 2011

Eighth International Conference on Information Technology:

New Generations, pp. 354�358. 5.3

[18] Security level - crypto++ wiki. [Online]. Available: https:
//www.cryptopp.com/wiki/Security_Level 5.8

[19] P. B. B. OBE. NIST recommendation for key manage-
ment. [Online]. Available: https://billatnapier.medium.com/
nist-recommendation-for-key-management-9cb53fd72f6e 5.8

[20] How many stars are there in the universe? [Online].
Available: https://skyandtelescope.org/astronomy-resources/
how-many-stars-are-there/ 5.8

69

https://crypto.stanford.edu/pbc/notes/group/lagrange.html
https://crypto.stanford.edu/pbc/notes/group/lagrange.html
https://www.luftlinie.org/Bern/Frankfurt
https://www.luftlinie.org/Bern/Frankfurt
https://www.pingman.com/kb/42
https://www.it-daily.net/analysen/16102-internet-geschwindigkeit-weltweit-deutschland-auf-platz-25
https://www.it-daily.net/analysen/16102-internet-geschwindigkeit-weltweit-deutschland-auf-platz-25
https://www.cryptopp.com/wiki/Security_Level
https://www.cryptopp.com/wiki/Security_Level
https://billatnapier.medium.com/nist-recommendation-for-key-management-9cb53fd72f6e
https://billatnapier.medium.com/nist-recommendation-for-key-management-9cb53fd72f6e
https://skyandtelescope.org/astronomy-resources/how-many-stars-are-there/
https://skyandtelescope.org/astronomy-resources/how-many-stars-are-there/

8 Declaration of Authorship

I con�rm with my signature that I have carried out my Bachelor Thesis in-
dependently. All sources of information (technical literature, discussions with
experts, etc.) that have contributed signi�cantly to my work are listed in my
work report.
First name and last name: Elias Summermatter
Date: 17.06.2021
Signature: ____________________________

70

9 Appendix A - Project Management

The following tools were used for this project :

� For project planning the project management tool Jira.6

� For code version management the GNUnet git 7 repository.

� For the management, versioning and backup of the thesis deliverables,
the simulation raw data and the simulation evaluation scripts a public
GitLab8 repository.

� For discovered improvements not yet implemented, the GNUnet bug tracker9

(bugs discovered during the course of the work and not implemented in
this work are additionally listed in the Future Work section).

The task can be divided into six main tasks:

1. Creation of the RFC

2. Determining the initial situation

3. Finding possible performance improvements

4. Finding possible security improvements

5. Implementing the found performance improvements

6. Implement the found security improvements

These six tasks were recorded as milestones in Jira and scheduled as shown in
the time line section. For every milestone various subtasks have been initially
de�ned and during the project newly de�ned subtask have been added. Details
about the subtasks can be found in the Jira project management tool.

In addition, there are the tasks that are required for the formal thesis but
are not directly related to the task.

� Documentation of the thesis

� Code improvements

� Video

� Poster for the exhibition

� TechDay presentation

� Bachelor defense

6https://byzantine-fault-tolerant-set-reconciliation.atlassian.net
7https://git.gnunet.org/gnunet.git
8https://gitlab.seccom.ch/elias/Byzantine-Fault-Tolerant-Set-Reconciliation
9https://bugs.gnunet.org

71

https://byzantine-fault-tolerant-set-reconciliation.atlassian.net
https://git.gnunet.org/gnunet.git
https://gitlab.seccom.ch/elias/Byzantine-Fault-Tolerant-Set-Reconciliation
https://bugs.gnunet.org

9.1 Risk Analysis

The risk analysis should determine which are the biggest risks for the project
and which countermeasures can be taken against these risks. The risks are
always to be seen in the light of the fact that the Bachelor Thesis could be
judged as insu�cient

ID Title Description of the risk Risk mitigation

1 Scope The biggest risk identi�ed for
this work is the size and scope
of the work. The work was

originally planned as work for
a two person team.

Unfortunately, since no second
person could be found to do
the work, it was decided to do
the project as a solo e�ort.

If the project cannot be
completed in full, it is

important that partial results
are documented in such a way

that it is also possible to
submit partial results.

2 Technical
knowledge

At the beginning of this
project there was very little
experience in C programming
and no knowledge of GNUnet.

This risk could be mitigated by
the author having studied both
the GNUnet project and C
programming in detail before

starting the project.
3 Complex

subject
matter

The subject involves
mathematical complexities that
need to be understood for a
thorough analysis. Since the
mathematical background in
computer science studies is not

as well-founded as in
mathematics studies, this can

become a challenge.

To minimise this risk, it will be
tried to avoid a complex
mathematical approach
wherever possible and

reasonable.

Table 13: Risk evaluation table

At the end of the project it can be stated that the risks identi�ed at the be-
ginning of the project corresponded well with the problems that were identi�ed.
The risk reductions have prevented insurmountable problems from occurring.
Especially risks 2 and 3 were problematic at the beginning, as they slowed down
progress at times. In the end, a good balance was found and the project was
successfully completed. Risk 1 was largely cushioned by an increased workload.
Signi�cantly more hours were invested than planned.

72

9.2 Time-Line

At the beginning of the project, a corresponding timeline was created, which
contains the appropriate epics to plan the project that the progress can be traced
and, in case of deviations, the appropriate measures can be taken.

Figure 26: Initial time line

This is the initial schedule that was created at the beginning of the project.
Care was taken to ensure that the parts that are interdependent were scheduled
one after the other.

Figure 27: Adapted timeline

The schedule had to be adjusted on the 08.04.2021, because the initial sched-
ule assumed that it is possible to determine the performance mathematically.
When it was de�ned that the performance would be determined by simulations,
the schedule had to be adjusted.

Another change was that originally the "performance considerations" were
scheduled after the "security considerations". It turned out that the security
considerations were largely based on the �ndings of the performance considera-
tions. For this reason, the security considerations were extended to include the
performance considerations.

It would have been di�cult to create the poster and the video before the
results of the work were available. Therefore, this work has been pushed back.

73

Figure 28: E�ective timeline

As can be seen on the e�ective schedule, I often worked on di�erent tasks at
the same time, as they were interdependent and di�cult to separate.

The creation of the RFC took more time than planned, some changes had
to be made after the scheduled time window.

The code improvements took slightly more time than planned.
The adapted timeline could be largely adhered to. As can be seen from

the e�ective timeline, all tasks could be completed by the submission of this
document. Only the epic "Bachelor Defense" is still open, because the Bachelor
Defense will take place after the submission of this document.

9.3 Time Management

The thesis was written over a period of 22 weeks. In total I worked about
650 hours on the thesis. A lot of time was spent learning C programming and
running and evaluating well over a hundred simulations. The special form, how
a RFC has to be created, cost me some e�ort. The execution of the various
tasks was planned in working days, not hours, see Jira roadmaps above.

9.4 Communication/Meetings

Fixed meetings took place weekly on Thursdays at 16.30h with Professor. Dr.
Christian Grotho�. These regular meetings were held remotely via the GNUnet
Mumble10 server due to the Covid-19 pandemic. Outside of these regular meet-
ings we communicated via mail and phone.

Two online meetings with Mr. Han van der Kleij (expert) and Professor.
Dr. Christian Grotho� took place. (04.March 2021 and 29.April 2021).

The date for the bachelor defense was set on April 26th, June 23rd and it
was decided that it should take place live.

10gnunet.org

74

9.5 Decisions

This section will justify and document the key decisions made during the project.

9.5.1 Performance Analysis: Mathematical or through Simulations

At the beginning of the performance analysis, the question arose whether the
performance analysis should be created by simulations or by mathematical
derivation.

It quickly became apparent that a mathematical analysis would be very
complicated, as the reasoning would have involved a large number of variable
parameters and such a model would have become very complex. Therefore, it
was decided to rely on "approximations" and thus on simulations. In addition,
a server with su�cient computing power was available for this work. For the
required simulations, 100'000de of CPU hours could be spent on simulations.

9.5.2 IBF Factor Static or Variable

At the beginning of the project, it was assumed that the IBF factor must be
de�ned variably and determined on the basis of the set di�erences, set sizes.
During the experiments it was found that a static IBF factor is su�cient. For
details see the performance section of this document.

9.5.3 Improvements

Since the work was very extensive and time was running out towards the end
of the work, it was necessary to decide which improvements should be saved for
future work and which improvements should be implemented in this work. The
deferred improvements are listed in Future Work.

9.6 Conclusion

All tasks were completed as planned. In the last four weeks, I have worked
many hours, including weekends, to achieve the de�ned goals.

75

10 Appendix B - RFC

76

Byzantine Fault Tolerant Set Reconciliation

Abstract
This document contains a protocol specification for Byzantine fault-tolerant Set Reconciliation.

Workgroup: Independent Stream
Internet-Draft: draft-summermatter-set-union-01
Published: 16 June 2021
Intended Status: Informational
Expires: 18 December 2021
Authors: E. Summermatter

Seccom GmbH
C. Grothoff
Berner Fachhochschule

Status of This Memo
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that
other groups may also distribute working documents as Internet-Drafts. The list of current
Internet-Drafts is at .

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts
as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 18 December 2021.

https://datatracker.ietf.org/drafts/current/

Copyright Notice
Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

Summermatter & Grothoff Expires 18 December 2021 Page 1

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Background

2.1. Bloom Filter

2.2. Counting Bloom Filter

3. Invertible Bloom Filter

3.1. Structure

3.2. Salted Element ID Calculation

3.3. HASH calculation

3.4. Mapping Function

3.5. Operations

3.5.1. Insert Element

3.5.2. Remove Element

3.5.3. Extracting elements

3.5.4. Set Difference

3.6. Wire format

4. Strata Estimator

5. Mode of Operation

5.1. Full Synchronisation Mode

5.2. Differential Synchronisation Mode

5.3. Combined Mode

6. Messages

6.1. Operation Request

6.1.1. Description

6.1.2. Structure

6.2. IBF

6.2.1. Description

6.2.2. Structure

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 2

6.3. IBF Last

6.3.1. Description

6.3.2. Structure

6.4. Element

6.4.1. Description

6.4.2. Structure

6.5. Offer

6.5.1. Description

6.5.2. Structure

6.6. Inquiry

6.6.1. Description

6.6.2. Structure

6.7. Demand

6.7.1. Description

6.7.2. Structure

6.8. Done

6.8.1. Description

6.8.2. Structure

6.9. Full Done

6.9.1. Description

6.9.2. Structure

6.10. Request Full

6.10.1. Description

6.10.2. Structure

6.11. Send Full

6.11.1. Description

6.11.2. Structure

6.12. Strata Estimator

6.12.1. Description

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 3

6.12.2. Structure

6.13. Strata Estimator Compressed

6.13.1. Description

6.14. Full Element

6.14.1. Description

6.14.2. Structure

7. Performance Considerations

7.1. Formulas

7.1.1. Operation Mode

7.1.2. IBF Size

7.1.3. Number of Buckets an Element is Hashed into

7.2. Variable Counter Size

7.3. Multi Strata Estimators

8. Security Considerations

8.1. General Security Checks

8.1.1. Input validation

8.1.2. Byzantine Boundaries

8.1.3. Valid State

8.1.4. Message Flow Control

8.1.5. Limit Active/Passive Decoding changes

8.1.6. Full Synchronisation Plausibility Check

8.2. States

8.2.1. Expecting IBF

8.2.2. Full Sending

8.2.3. Expecting IBF Last

8.2.4. Active Decoding

8.2.5. Finish Closing

8.2.6. Finished

8.2.7. Expect SE

8.2.8. Full Receiving

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 4

8.2.9. Passive Decoding

8.2.10. Finish Waiting

9. Constants

10. GANA Considerations

11. Contributors

12. Normative References

Appendix A. Test Vectors

A.1. Map Function

A.2. ID Calculation Function

A.3. Counter Compression Function

Authors' Addresses

1. Introduction
This document describes a byzantine fault tolerant set reconciliation protocol used to efficient
and securely compute the union of two sets across a network.

This byzantine fault tolerant set reconciliation protocol can be used in a variety of applications.
Our primary envisioned application domain is the distribution of revocation messages in the
GNU Name System (GNS) . In GNS, key revocation messages are usually flooded across the
peer-to-peer overlay network to all connected peers whenever a key is revoked. However, as
peers may be offline or the network might have been partitioned, there is a need to reconcile
revocation lists whenever network partitions are healed or peers go online. The GNU Name
System uses the protocol described in this specification to efficiently distribute revocation
messages whenever network partitions are healed. Another application domain for the protocol
described in this specification are Byzantine fault-tolerant bulletin boards, like those required in
some secure multiparty computations. A well-known example for secure multiparty
computations are various E-voting protocols which use a
bulletin board to share the votes and intermediate computational results. We note that for such
systems, the set reconciliation protocol is merely a component of a multiparty consensus
protocol, such as the one described in Dold's "Byzantine set-union consensus using efficient set
reconciliation" .

The protocol described in this report is generic and suitable for a wide range of applications. As a
result, the internal structure of the elements in the sets MUST be defined and verified by the
application using the protocol. This document thus does not cover the element structure, except
for imposing a limit on the maximum size of an element.

[GNS]

[CryptographicallySecureVoting]

[ByzantineSetUnionConsensusUsingEfficientSetReconciliation]

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 5

The protocol faces an inherent trade-off between minimizing the number of network round-trips
and the number of bytes sent over the network. Thus, for the protocol to choose the right
parameters for a given situation, applications using an implementation of the protocol SHOULD
provide a parameter that specifies the cost-ratio of round-trips vs. bandwidth usage. Given this
trade-off factor, an implementation CAN then choose parameters that minimize total execution
cost. In particular, there is one major choice to be made, namely between sending the complete
set of elements, or computing the set differences and transmitting only the elements in the set
differences. In the latter case, our design is basically a concrete implementation of a proposal by
Eppstein.

We say that our set reconciliation protocol is Byzantine fault-tolerant because it provides
cryptographic and probabilistic methods to discover if the other peer is dishonest or misbehaving.
Here, the security objective is to limit resources wasted on malicious actors. Malicious actors
could send malformed messages, including malformed set elements, claim to have much larger
numbers of valid set elements than they actually hold, or request the retransmission of elements
that they have already received in previous interactions. Bounding resources consumed by
malicous actors is important to ensure that higher-level protocols can use set reconciliation and
still meet their resource targets. This can be particularly critical in multi-round synchronous
consensus protocols where peers that cannot answer in a timely fashion would have to be treated
as failed or malicious.

To defend against some of these attacks, applications SHOULD remember the number of
elements previously shared with a peer, and SHOULD provide a way to check that elements are
well-formed. Applications MAY also provide an upper bound on the total number of valid
elements that exist. For example, in E-voting, the number of eligible voters MAY be used to provide
such an upper bound.

A first draft of this RFC is part of Elias Summermatter's bachelor thesis. Many of the algorithms
and parameters documented in this RFC are derived from experiments detailed in this thesis.

This document defines the normative wire format of resource records, resolution processes,
cryptographic routines and security considerations for use by implementors. SETU requires a
bidirectional secure communication channel between the two parties. Specification of the
communication channel is out of scope of this document.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as
described in .

[Eppstein]

[byzantine_fault_tolerant_set_reconciliation]

[RFC2119]

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 6

2. Background

2.1. Bloom Filter
A Bloom filter (BF) is a space-efficient probabilistic datastructure to test if an element is part of a
set of elements. Elements are identified by an element ID. Since a BF is a probabilistic
datastructure, it is possible to have false-positives: when asked if an element is in the set, the
answer from a BF is either "no" or "maybe".

A BF consists of L buckets. Every bucket is a binary value that can be either 0 or 1. All buckets are
initialized to 0. A mapping function M is used to map each ID of each element from the set to a
subset of k buckets. In the original proposal by Bloom, M is non-injective and can thus map the
same element multiple times to the same bucket. The type of the mapping function can thus be
described by the following mathematical notation:

A typical mapping function is constructed by hashing the element, for example using the well-
known .

To add an element to the BF, the corresponding buckets under the map M are set to 1. To check if
an element may be in the set, one tests if all buckets under the map M are set to 1.

In the BF the buckets are set to 1 if the corresponding bit in the bitstream is 1. If there is a collision
and a bucket is already set to 1, the bucket stays at 1.

In the following example the element e0 with M(e0) = {1,3} has been added:

Figure 1

 # M: E->B^k

 # L = Number of buckets
 # B = 0,1,2,3,4,...L-1 (the buckets)
 # k = Number of buckets per element
 # E = Set of elements

 Example: L=256, k=3
 M('element-data') = {4,6,255}

Section 2 of HKDF construction [RFC5869]

Figure 2

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+
 | 0 | 1 | 0 | 1 |
 +-------------+-------------+-------------+-------------+

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 7

https://rfc-editor.org/rfc/rfc5869#section-2

It is easy to see that an element e1 with M(e1) = {0,3} could have been added to the BF below, while
an element e2 with M(e2) = {0,2} cannot be in the set represented by the BF below:

The parameters L and k depend on the set size and MUST be chosen carefully to ensure that the
BF does not return too many false-positives.

It is not possible to remove an element from the BF because buckets can only be set to 1 or 0.
Hence it is impossible to differentiate between buckets containing one or more elements. To
remove elements from the BF a Counting Bloom Filter is required.

Figure 3

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+
 | 1 | 0 | 0 | 1 |
 +-------------+-------------+-------------+-------------+

2.2. Counting Bloom Filter
A Counting Bloom Filter (CBF) is a variation on the idea of a Bloom Filter. With a CBF, buckets are
unsigned numbers instead of binary values. This allows the removal of an element from the CBF.

Adding an element to the CBF is similar to the adding operation of the BF. However, instead of
setting the buckets to 1 the numeric value stored in the bucket is increased by 1. For example, if
two colliding elements M(e1) = {1,3} and M(e2) = {0,3} are added to the CBF, bucket 0 and 1 are set
to 1 and bucket 3 (the colliding bucket) is set to 2:

The counter stored in the bucket is also called the order of the bucket.

To remove an element form the CBF the counters of all buckets the element is mapped to are
decreased by 1.

Figure 4

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+
 | 1 | 1 | 0 | 2 |
 +-------------+-------------+-------------+-------------+

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 8

For example, removing M(e2) = {1,3} from the CBF above results in:

In practice, the number of bits available for the counters is often finite. For example, given a 4-bit
counter, a CBF bucket would overflow 16 elements are mapped to the same bucket. To handle this
case, the maximum value (15 in our example) is considered to represent "infinity". Once the order
of a bucket reaches "infinity", it is no longer incremented or decremented.

The parameters L and k and the number of bits allocated to the counters SHOULD depend on the
set size. A CBF will degenerate when subjected to insert and remove iterations of different
elements, and eventually all buckets will reach "infinity". The speed of the degradation will
depend on the choice of L and k in relation to the number of elements stored in the IBF.

Figure 5

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+
 | 1 | 0 | 0 | 1 |
 +-------------+-------------+-------------+-------------+

3. Invertible Bloom Filter
An Invertible Bloom Filter (IBF) is a further extension of the Counting Bloom Filter. An IBF
extends the Counting Bloom Filter with two more operations: decode and set difference. This two
extra operations are key to efficiently obtain small differences between large sets.

3.1. Structure
An IBF consists of an injective mapping function M mapping elements to k out of L buckets. Each
of the L buckets stores a signed COUNTER, an IDSUM and an XHASH. An IDSUM is the XOR of
various element IDs. An XHASH is the XOR of various hash values. As before, the values used for k,
L and the number of bits used for the signed counter and the XHASH depend on the set size and
various other trade-offs.

If the IBF size is too small or the mapping function does not spread out the elements uniformly,
the signed counter can overflow or underflow. As with the CBF, the "maximum" value is thus used
to represent "infinite". As there is no need to distinguish between overflow and underflow, the

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 9

most canonical representation of "infinite" would be the minimum value of the counter in the
canonical 2-complement interpretation. For example, given a 4-bit counter a value of -8 would be
used to represent "infinity".

Figure 6

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+-------
 count | COUNTER | COUNTER | COUNTER | COUNTER | C...
 +-------------+-------------+-------------+-------------+------
 idSum | IDSUM | IDSUM | IDSUM | IDSUM | I...
 +-------------+-------------+-------------+-------------+------
hashSum | HASHSUM | HASHSUM | HASHSUM | HASHSUM | H..
 +-------------+-------------+-------------+-------------+-------

3.2. Salted Element ID Calculation
IBFs are a probabilistic data structure, hence it can be necessary to recompute the IBF in case
operations fail, and then try again. The recomputed IBF would ideally be statistically
independent of the failed IBF. This is achieved by introducing an IBF-salt. Given that with benign
peers failures should be rare, and that we need to be able to "invert" the application of the IBF-salt
to the element IDs, we use an unsigned 32 bit non-random IBF-salt value of which the lowest 6 bits
will be used to rotate bits in the element ID computation.

64-bit element IDs are generated from a with HMAC-
SHA512 as XTR and HMAC-SHA256 as PRF with a 16-bit KDF-salt set to a unsigned 16-bit
representation of zero. The output of the KDF is then truncated to 64-bit. Finally, salting is done by
calculating the IBF-salt modulo 64 (effectively using only the lowest 6-bits of the IBF-salt) and
doing a bitwise right rotation of the output of KDF. We note that this operation was chosen as it is
easily inverted, allowing applications to easily derive element IDs with one IBF-salt value from
element IDs generated with a different IBF-salt value.

Section 2 of HKDF construction [RFC5869]

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 10

https://rfc-editor.org/rfc/rfc5869#section-2

In case the IBF does not decode, the IBF-salt can be changed to compute different element IDs,
which will (likely) be mapped to different buckets, likely allowing the IBF to decode in a
subsequent iteration.

Figure 7

INPUTS:
key: Pre calculated and truncated key from id_calculation function
ibf_salt: Salt of the IBF
OUTPUT:
value: salted key
FUNCTION salt_key(key,ibf_salt):
 s = (ibf_salt * 7) modulo 64;
 /* rotate key */
 return (key >> s) | (key << (64 - s))
END FUNCTION

INPUTS:
element: element for which we are to calculate the element ID
ibf_salt: Salt of the IBF
OUTPUT:
value: the ID of the element
FUNCTION id_calculation (element,ibf_salt):
 kdf_salt = 0 // 16 bits
 XTR=HMAC-SHA256
 PRF=HMAC-SHA256
 key = HKDF(XTR, PRF, kdf_salt, element) modulo 2^64
 return salt_key(key, ibf_salt)
END FUNCTION

3.3. HASH calculation
The HASH of an element ID is computed by calculating the CRC32 checksum of the 64-bit ID value,
which returns a 32-bit value.CRC32 is well-known and described in

.
Section 4.1 of the RFC

[RFC3385]

3.4. Mapping Function
The mapping function M decides which buckets a given ID is mapped to. For an IBF, it is beneficial
to use an injective mapping function M.

The first index is simply the CRC32 of the ID modulo the IBF size. The second index is calculated by
creating a new 64-bit value by shifting the previous 32-bit value left and setting the lower 32 bits to
the number of indices already processed. From the resulting 64-bit value, another CRC32
checksum is computed. The subsequent index is the modulo of this CRC32 output. The process is

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 11

https://rfc-editor.org/rfc/rfc3385#section-4.1

repeated until the desired number of indices is generated. In the case the process computes the
same index twice, which would mean this bucket could not get pure again, the second hit is just
skipped and the next iteration is used instead, creating an injective mapping function.

Figure 8

INPUTS:
key: the ID of the element calculated
k: numbers of buckets per element
L: total number of buckets in the IBF
OUTPUT:
dst: Array with k bucket IDs
FUNCTION get_bucket_id (key, k, L)
 bucket = CRC32(key)
 i = 0 // unsigned 32-bit index
 filled = 0
 WHILE filled < k DO

 element_already_in_bucket = false
 j = 0
 WHILE j < filled DO
 IF dst[j] == bucket modulo L THEN
 element_already_in_bucket = true
 END IF
 j++
 END WHILE

 IF !element_already_in_bucket THEN
 dst[filled] = bucket modulo L
 filled = filled + 1
 END IF

 x = (bucket << 32) | i // 64 bit result
 bucket = CRC32(x)
 i = i + 1
 END WHILE
 return dst
END FUNCTION

3.5. Operations
When an IBF is created, all counters and IDSUM and HASHSUM values of all buckets are
initialized to zero.

3.5.1. Insert Element

To add an element to an IBF, the element is mapped to a subset of k buckets using the injective
mapping function M as described in section Mapping Function. For the buckets selected by the
mapping function, the counter is increased by one and the IDSUM field is set to the XOR of the
element ID computed as described in section Salted Element ID Calculation and the previously
stored IDSUM. Furthermore, the HASHSUM is set to the XOR of the previously stored HASHSUM
and the hash of the element ID computed as described in section HASH calculation.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 12

In the following example, the insert operation is illustrated using an element with the ID 0x0102
mapped to {1,3} with a hash of 0x4242, and a second element with the ID 0x0304 mapped to {0,1}
and a hash of 0x0101.

Empty IBF:

Insert first element with ID 0x0102 and hash 0x4242 into {1,3}:

Insert second element with ID 0x0304 and hash 0101 into {0,1}:

Figure 9

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+
 count | 0 | 0 | 0 | 0 |
 +-------------+-------------+-------------+-------------+
 idSum | 0x0000 | 0x0000 | 0x0000 | 0x0000 |
 +-------------+-------------+-------------+-------------+
hashSum | 0x0000 | 0x0000 | 0x0000 | 0x0000 |
 +-------------+-------------+-------------+-------------+

Figure 10

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+
 count | 0 | 1 | 0 | 1 |
 +-------------+-------------+-------------+-------------+
 idSum | 0x0000 | 0x0102 | 0x0000 | 0x0102 |
 +-------------+-------------+-------------+-------------+
hashSum | 0x0000 | 0x4242 | 0x0000 | 0x4242 |
 +-------------+-------------+-------------+-------------+

Figure 11

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+
 count | 1 | 2 | 0 | 1 |
 +-------------+-------------+-------------+-------------+
 idSum | 0x0304 | 0x0206 | 0x0000 | 0x0102 |
 +-------------+-------------+-------------+-------------+
hashSum | 0x0101 | 0x4343 | 0x0000 | 0x4242 |
 +-------------+-------------+-------------+-------------+

3.5.2. Remove Element

To remove an element from the IBF the element is again mapped to a subset of the buckets using
M. Then all the counters of the buckets selected by M are reduced by one, the IDSUM is replaced
by the XOR of the old IDSUM and the ID of the element being removed, and the HASHSUM is
similarly replaced with the XOR of the old HASHSUM and the hash of the ID.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 13

In the following example the remove operation is illustrated.

IBF with two encoded elements:

After removal of element with ID 0x0304 and hash 0x0101 mapped to {0,1} from the IBF:

Note that it is possible to "remove" elements from an IBF that were never present in the IBF in the
first place. A negative counter value is thus indicative of elements that were removed without
having been added. Note that an IBF bucket counter of zero no longer guarantees that an
element mapped to that bucket is not present in the set: a bucket with a counter of zero can be
the result of one element being added and a different element (mapped to the same bucket) being
removed. To check that an element is not present requires a counter of zero and an IDSUM and
HASHSUM of zero --- and some certainty that there was no collision due to the limited number of
bits in IDSUM and HASHSUM. Thus, IBFs are not suitable to replace BFs or IBFs.

Buckets in an IBF with a counter of 1 or -1 are crucial for decoding an IBF, as they MIGHT
represent only a single element, with the IDSUM being the ID of that element. Following Eppstein

, we will call buckets that only represent a single element pure buckets. Note that due to
the possibility of multiple insertion and removal operations affecting the same bucket, not all
buckets with a counter of 1 or -1 are actually pure buckets. Sometimes a counter can be 1 or -1
because N elements mapped to that bucket were added while N-1 or N+1 different elements also
mapped to that bucket were removed.

Figure 12

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+
 count | 1 | 2 | 0 | 1 |
 +-------------+-------------+-------------+-------------+
 idSum | 0x0304 | 0x0206 | 0x0000 | 0x0102 |
 +-------------+-------------+-------------+-------------+
hashSum | 0x0101 | 0x4343 | 0x0000 | 0x4242 |
 +-------------+-------------+-------------+-------------+

Figure 13

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+
 count | 0 | 1 | 0 | 1 |
 +-------------+-------------+-------------+-------------+
 idSum | 0x0000 | 0x0102 | 0x0000 | 0x0102 |
 +-------------+-------------+-------------+-------------+
hashSum | 0x0000 | 0x4242 | 0x0000 | 0x4242 |
 +-------------+-------------+-------------+-------------+

[Eppstein]

3.5.3. Extracting elements

Extracting elements from an IBF yields IDs of elements from the IBF. Elements are extracted
from an IBF by repeatedly performing a decode operation on the IBF.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 14

A decode operation requires a pure bucket, that is a bucket to which M only mapped a single
element, to succeed. Thus, if there is no bucket with a counter of 1 or -1, decoding fails. However,
as a counter of 1 or -1 is not a guarantee that the bucket is pure, there is also a chance that the
decoder returns an IDSUM value that is actually the XOR of several IDSUMs. This is primarily
detected by checking that the HASHSUM is the hash of the IDSUM. Only if the HASHSUM also
matches, the bucket could be pure. Additionally, one MUST check that the IDSUM value actually
would be mapped by M to the respective bucket. If not, there was a hash collision and the bucket
is also not pure.

The very rare case that after all these checks a bucket is still falsely identified as pure MUST be
detected (say by determining that extracted element IDs do not match any actual elements), and
addressed at a higher level in the protocol. As these failures are probabilistic and depend on
element IDs and the IBF construction, they can typically be avoided by retrying with different
parameters, such as a different way to assign element IDs to elements (by varying the IBF-salt),
using a larger value for L, or a different mapping function M. A more common scenario
(especially if L was too small) is that IBF decoding fails because there is no pure bucket. In this
case, the higher-level protocol generally MUST also retry using different parameters (except if an
attack is detected).

Suppose the IBF contains a pure bucket. In this case, the IDSUM in the bucket is the ID of an
element. Furthermore, it is then possible to remove that element from the IBF (by inserting it if
the counter was negative, and by removing it if the counter was positive). This is likely to cause
other buckets to become pure, allowing further elements to be decoded. Eventually, decoding
ought to finish with all counters and IDSUM and HASHSUM values reach zero. However, it is also
possible that an IBF only partly decodes and then decoding fails due to the lack of pure buckets
after extracting some element IDs.

In the following example the successful decoding of an IBF containing the two elements
previously added in our running example.

We begin with an IBF with two elements added:

Figure 14

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+
 count | 1 | 2 | 0 | 1 |
 +-------------+-------------+-------------+-------------+
 idSum | 0x0304 | 0x0206 | 0x0000 | 0x0102 |
 +-------------+-------------+-------------+-------------+
hashSum | 0x0101 | 0x4343 | 0x0000 | 0x4242 |
 +-------------+-------------+-------------+-------------+

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 15

In the IBF are two pure buckets to decode (buckets 0 and 3) we choose to start with decoding
bucket 0. This yields the element with the hash ID 0x0304 and hash 1010. This element ID is
mapped to buckets {0,1}. Subtracting this element results in bucket 1 becoming pure:

We can now decoding bucket 2 and extract the element with the ID 0x0102 and hash 0x4242. Now
the IBF is empty. Extraction completes with the status that the IBF has been successfully decoded.

Figure 15

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+
 count | 0 | 1 | 0 | 1 |
 +-------------+-------------+-------------+-------------+
 idSum | 0x0000 | 0x0102 | 0x0000 | 0x0102 |
 +-------------+-------------+-------------+-------------+
hashSum | 0x0000 | 0x4242 | 0x0000 | 0x4242 |
 +-------------+-------------+-------------+-------------+

Figure 16

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+
 count | 0 | 0 | 0 | 0 |
 +-------------+-------------+-------------+-------------+
 idSum | 0x0000 | 0x0000 | 0x0000 | 0x0000 |
 +-------------+-------------+-------------+-------------+
hashSum | 0x0000 | 0x0000 | 0x0000 | 0x0000 |
 +-------------+-------------+-------------+-------------+

3.5.4. Set Difference

Given addition and removal as defined above, it is possible to define an operation on IBFs that
computes an IBF representing the set difference. Suppose IBF1 represents set A, and IBF2
represents set B. Then this set difference operation will compute IBF3 which represents the set A -
B. Note that this computation can be done only on the IBFs, and does not require access to the
elements from set A or B. To calculate the IBF representing this set difference, both IBFs MUST
have the same length L, the same number of buckets per element k and use the same map M.
Naturally, all IDs must have been computed using the same IBF-salt. Given this, one can compute
the IBF representing the set difference by taking the XOR of the IDSUM and HASHSUM values of
the respective buckets and subtracting the respective counters. Care MUST be taken to handle
overflows and underflows by setting the counter to "infinity" as necessary. The result is a new IBF
with the same number of buckets representing the set difference.

This new IBF can be decoded as described in section 3.5.3. The new IBF can have two types of pure
buckets with counter set to 1 or -1. If the counter is set to 1 the element is missing in the secondary
set, and if the counter is set to -1 the element is missing in the primary set.

To demonstrate the set difference operation we compare IBF-A with IBF-B and generate as
described IBF-AB

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 16

IBF-A contains the elements with ID 0x0304 and hash 0x0101 mapped to {0,1}, and ID 0x0102 and
hash 0x4242 mapped to {1,3}:

IBF-B also contains the element with ID 0x0102 and and another element with ID 0x1345 and hash
0x5050 mapped to {1,2}.

IBF-A minus IBF-B is then:

After calculating and decoding the IBF-AB shows clear that in IBF-A the element with the hash
0x5050 is missing (-1 in bucket 2) while in IBF-B the element with the hash 0101 is missing (1 in
bucket 0). The element with hash 0x4242 is present in IBF-A and IBF-B and is removed by the set
difference operation. Bucket 2 is not empty.

Figure 17

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+
 count | 1 | 2 | 0 | 1 |
 +-------------+-------------+-------------+-------------+
 idSum | 0x0304 | 0x0206 | 0x0000 | 0x0102 |
 +-------------+-------------+-------------+-------------+
hashSum | 0x0101 | 0x4343 | 0x0000 | 0x4242 |
 +-------------+-------------+-------------+-------------+

Figure 18

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+
 count | 0 | 1 | 1 | 1 |
 +-------------+-------------+-------------+-------------+
 idSum | 0x0000 | 0x1447 | 0x1345 | 0x0102 |
 +-------------+-------------+-------------+-------------+
hashSum | 0x0000 | 0x9292 | 0x5050 | 0x4242 |
 +-------------+-------------+-------------+-------------+

Figure 19

 bucket-0 bucket-1 bucket-2 bucket-3
 +-------------+-------------+-------------+-------------+
 count | 1 | 0 | -1 | 0 |
 +-------------+-------------+-------------+-------------+
 idSum | 0x0304 | 0x1049 | 0x1345 | 0x0000 |
 +-------------+-------------+-------------+-------------+
hashSum | 0x0101 | 0x5151 | 0x5050 | 0x0000 |
 +-------------+-------------+-------------+-------------+

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 17

3.6. Wire format
For the counter field, we use a variable-size encoding to ensure that even for very large sets the
counter should never reach "infinity", while also ensuring that the encoding is compact for small
sets. Hence, the counter size transmitted over the wire varies between 1 and 64 bits, depending on
the maximum counter in the IBF. A range of 1 to 64 bits should cover most areas of application
and can be efficiently implemented on most contemporary CPU architectures and programming
languages. The bit length for the transmitted IBF will be communicated in the header of the IBF
message in the "IMCS" field as unsigned 8-bit integer. For implementation details see section
Variable Counter Size.

For the "IDSUM", we always use a 64-bit representation. The IDSUM value MUST have sufficient
entropy for the mapping function M to yield reasonably random buckets even for very large
values of L. With a 32 bit value the chance that multiple elements may be mapped to the same ID
would be quite high, even for moderately large sets. Using more than 64 bits would at best make
sense for very large sets, but then it is likely always better to simply afford additional round trips
to handle the occasional collision. 64 bits are also a reasonable size for many CPU architectures.

For the "HASHSUM", we always use a 32-bit representation. Here, it is most important to avoid
collisions, where different elements are mapped to the same hash, possibly resulting in a bucket
being falsely classified as pure. While with 32 bits there remains a non-negligible chance of
accidental collisions, our protocol is designed to handle occasional collisions. Hence, at 32 bit the
chance is believed to be sufficiently small enough for the protocol to handle those cases
efficiently. Smaller hash values would safe bandwidth, but also substantially increase the chance
of collisions. 32 bits are also again a reasonable size for many CPU architectures.

4. Strata Estimator
Strata Estimators help estimate the size of the set difference between two sets of elements. This is
necessary to efficiently determinate the tuning parameters for an IBF, in particular a good value
for L.

Basically a Strata Estimator (SE) is a series of IBFs (with a rather small value of L=79) in which
increasingly large subsets of the full set of elements are added to each IBF. For the n-th IBF, the
function selecting the subset of elements MUST sample to select (probabilistically) 1/(2^n) of all
elements. This can be done by counting the number of trailing bits set to "1" in an element ID, and
then inserting the element into the IBF identified by that counter. As a result, all elements will be
mapped to one IBF, with the n-th IBF being statistically expected to contain 1/(2^n) elements.

Given two SEs, the set size difference can be estimated by attempting to decode all of the IBFs.
Given that L is set to a fixed and rather small value, IBFs containing large strata will likely fail to
decode. For IBFs that failed to decode, one simply extrapolates the number of elements by scaling
the numbers obtained from the other IBFs that did decode. If none of the IBFs of the SE decoded
(which given a reasonable number of IBFs in the SE should be highly unlikely), one can
theoretically retry using a different IBF-salt.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 18

When decoding the IBFs in the strata estimator, it is possible to determine on which side which
part of the difference is. For this purpose, the pure buckets with counter 1 and -1 must be
distinguished and assigned to the respective side when decoding the IBFs.

5. Mode of Operation
Depending on the state of the two sets the set union protocol uses different modes of operation to
efficiently determinate missing elements between the two sets.

The simplest mode is the full synchronisation mode. If the difference between the sets of the two
peers exceeds a certain threshold, the overhead to determine which elements are different would
outweigh the overhead of simply sending the complete set. Hence, the protocol may determine
that the most efficient method is to exchange the full sets.

The second possibility is that the difference between the sets is relatively small compared to the
set size. In this case, the differential synchronisation mode is more efficient. Given these two
possibilities, the first steps of the protocol are used to determine which mode MUST be used.

Thus, the set union protocol always begins with the following operation mode independent steps:

The initiating peer begins in the Initiating Connection state and the receiving peer in the
Expecting Connection state. The first step for the initiating peer in the protocol is to send an
Operation Request to the receiving peer and transition into the Expect SE state. After receiving
the Operation Request the receiving peer transitions to the Expecting IBF state and answers with
the Strata Estimator message. When the initiating peer receives the Strata Estimator message, it
decides with some heuristics which operation mode is likely more suitable for the estimated set
difference and the application-provided latency-bandwidth tradeoff. The detailed algorithm used
to choose between the Full Synchronisation Mode and the Differential Synchronisation Mode is
explained in the section Combined Mode below.

Expecting IBF:

5.1. Full Synchronisation Mode
When the initiating peer decides to use the full synchronisation mode and it is better that the
other peer sends his set first, the initiating peer sends a Request Full message, and transitions
from Expecting SE to the Full Receiving state. If it has been determined that it is better that the
initiating peer sends his set first, the initiating peer sends a Send Full message followed by all set
elements in Full Element messages to the other peer, followed by the Full Done message, and
transitions into the Full Sending state.

A state diagram illustrating the state machine used during full synchronization is provided here.

The behavior of the participants the different state is described below:

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 19

https://git.gnunet.org/lsd0003.git/plain/statemachine/state_machine_full.png

Full Sending:

Full Receiving:

If a peer in the Expecting IBF state receives a Request Full message from the other peer, the
peer sends all the elements of his set followed by a Full Done message to the other peer, and
transitions to the Full Sending state. If the peer receives an Send Full message followed by
Full Element messages, the peer processes the element and transitions to the Full
Receiving state.

While a peer is in Full Sending state the peer expects to continuously receive
elements from the other peer. As soon as a the Full Done message is received, the peer
transitions into the Finished state.

While a peer is in the Full Receiving state, it expects to continuously receive
elements from the other peer. As soon as a the Full Done message is received, it sends the
remaining elements (those it did not receive) from his set to the other peer, followed by a
Full Done. After sending the last message, the peer transitions into the Finished state.

Passive Decoding:

Inquiry message:

5.2. Differential Synchronisation Mode
The message format used by the protocol limits the maximum message size to 64 kb. Given that L
can be large, an IBF will not always fit within that size limit. To deal with this, larger IBFs are split
into multiple messages.

When the initiating peer in the Expected SE state decides to use the differential synchronisation
mode, it sends an IBF, which may consist of several IBF messages, to the receiving peer and
transitions into the Passive Decoding state.

The receiving peer in the Expecting IBF state receives the first IBF message from the initiating
peer, and transitions into the Expecting IBF Last state if the IBF was split into multiple IBF
messages. If there is just a single IBF message, the receiving peer transitions directly to the Active
Decoding state.

The peer that is in the Active Decoding, Finish Closing or in the Expecting IBF Last state is
called the active peer, and the peer that is in either the Passive Decoding or the Finish Waiting
state is called the passive peer.

A state diagram illustrating the state machine used during differential synchronization is
provided here.

The behavior of the participants the different states is described below:

In the Passive Decoding state the passive peer reacts to requests from the
active peer. The action the passive peer executes depends on the message the passive peer
receives in the Passive Decoding state from the active peer and is described below on a
per message basis.

The Inquiry message is received if the active peer requests the SHA-512
hash of one or more elements (by sending the 64 bit element ID) that are missing
from the active peer's set. In this case the passive peer answers with Offer messages
which contain the SHA-512 hash of the requested element. If the passive peer does

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 20

https://git.gnunet.org/lsd0003.git/plain/statemachine/differential_state_machine.png

Demand message:

Offer message:

Element message:

IBF message:

IBF Last message:

Done message:

Active Decoding:

not have an element with a matching element ID, it MUST ignore the inquiry (in this
case, a bucket was falsely classified as pure, decoding the IBF will eventually fail, and
roles will be swapped). It should be verified that after an falsely classified pure
bucket a role change is made. If multiple elements match the 64 bit element ID, the
passive peer MUST send offers for all of the matching elements.

The Demand message is received if the active peer requests a complete
element that is missing in the active peers set in response to an offer. If the requested
element is known and has not yet been transmitted the passive peer answers with
an Element message which contains the full, application-dependent data of the
requested element. If the passive peer receives a demand for a SHA-512 hash for
which it has no corresponding element, a protocol violation is detected and the
protocol MUST be aborted. Implementations MUST also abort when facing demands
without previous matching offers or for which the passive peer previously
transmitted the element to the active peer.

The Offer message is received if the active peer has decoded an element
that is present in the active peers set and is likely be missing in the set of the passive
peer. If the SHA-512 hash of the offer is indeed not a hash of any of the elements from
the set of the passive peer, the passive peer MUST answer with a Demand message for
that SHA-512 hash and remember that it issued this demand. The demand thus needs
to be added to a list with unsatisfied demands.

When a new Element message has been received the peer checks if a
corresponding Demand for the element has been sent and the demand is still
unsatisfied. If the element has been demanded the peer checks the element for
validity, removes it from the list of pending demands and then saves the element to
the set. Otherwise the peer ignores the element.

If an IBF message is received, this indicates that decoding of the IBF on the
active site has failed and roles will be swapped. The receiving passive peer
transitions into the Expecting IBF Last state, and waits for more IBF messages.
There, once the final IBF Last message has been received, it transitions to Active
Decoding.

If an IBF Last message is received this indicates that there is just one
IBF slice left and a direct state and role transition from Passive Decoding to Active
Decoding is initiated.

Receiving the Done message signals the passive peer that all demands of
the active peer have been satisfied. Alas, the active peer will continue to process
demands from the passive peer. Upon receiving this message, the passive peer
transitions into the Finish Waiting state.

In the Active Decoding state the active peer decodes the IBFs and evaluates
the set difference between the active and passive peer. Whenever an element ID is obtained
by decoding the IBF, the active peer sends either an offer or an inquiry to the passive peer,
depending on which site the decoded element is missing.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 21

Offer message:

Demand message:

Element message:

Done message:

Expecing IBF Last

If the IBF decodes a positive (1) pure bucket, the element is missing on the passive peers
site. Thus, the active peer sends an Offer to the passive peer. A negative (-1) pure bucket
indicates that an element is missing in the active peers set, so the active peer sends a
Inquiry to the passive peer.

In case the IBF does not successfully decode anymore, the active peer sends a new IBF
computed with a different IBF-salt to the passive peer and changes into Passive Decoding
state. This initiates a role swap. To reduce overhead and prevent double transmission of
offers and elements, the new IBF is created on the local set after updating it with the all of
the elements that have been successfully demanded. Note that the active peer MUST NOT
wait for all active demands to be satisfied, as demands can fail if a bucket was falsely
classified as pure.

As soon as the active peer successfully finished decoding the IBF, the active peer sends a
Done message to the passive peer.

All other actions taken by the active peer depend on the message the active peer receives
from the passive peer. The actions are described below on a per message basis:

The Offer message indicates that the passive peer received a Inquiry
message from the active peer. If a inquiry has been sent and the offered element is
missing in the active peers set, the active peer sends a Demand message to the
passive peer. The demand needs to be added to a list of unsatisfied demands. In case
the received offer is for an element that is already in the set of the peer, the offer
MUST BE ignored.

The Demand message indicates that the passive peer received a Offer
from the active peer. The active peer satisfies the demand of the passive peer by
sending an Element message if a offer request for the element was sent earlier.
Otherwise, the protocol MUST be aborted, as peers must never send demands for
hashes that they have never been offered.

If element is received that was not demanded or for which the
application-specific validation logic fails, the protocol MUST be aborted. Otherwise,
the corresponding demand is marked as satisfied. Note that this applies only to the
differential synchronization mode. In full synchronization, it is perfectly normal to
receive Full Element messages for elements that were not demanded and that might
even already be known locally.

Receiving the message Done indicates that all demands of the passive peer
have been satisfied. The active peer then changes into the Finish Closing state. If the
IBF has not finished decoding and the Done is received, the other peer is not in
compliance with the protocol and the protocol MUST be aborted.

In this state the active peer continuously receives IBF messages from the
passive peer. When the last IBF Last message is received, the peer changes into the Active
Decoding state.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 22

Finish Closing / Finish Waiting In this states the peers are waiting for all demands to be
satisfied and for the synchronisation to be completed. When all demands are satisfied the
peer changes into Finished state.

5.3. Combined Mode
In the combined mode the protocol decides between Full Synchronisation Mode and the
Differential Synchronisation Mode to minimize resource consumption. Typically, the protocol
always runs in combined mode, but implementations MAY allow applications to force the use of
one of the modes for testing. In this case, applications MUST ensure that the respective options to
force a particular mode are used by both participants.

The Differential Synchronisation Mode is only efficient on small set differences or if the byte-size
of the elements is large. If the set difference is estimated to be large the Full Synchronisation
Mode is more efficient. The exact heuristics and parameters on which the protocol decides which
mode MUST be used are described in the Performance Considerations section of this document.

There are two main cases when a Full Synchronisation Mode is always used. The first case is when
one of the peers announces having an empty set. This is announced by setting the SETSIZE field in
the Strata Estimator to 0. The second case is if the application requests full synchronisation
explicitly. This is useful for testing and MUST NOT be used in production.

The state diagram illustrating the combined mode can be found here.

6. Messages
This section describes the various message formats used by the protocol.

6.1. Operation Request
6.1.1. Description

This message is the first message of the protocol and it is sent to signal to the receiving peer that
the initiating peer wants to initialize a new connection.

This message is sent in the transition between the Initiating Connection state and the Expect SE
state.

If a peer receives this message and is willing to run the protocol, it answers by sending back a
Strata Estimator message. Otherwise it simply closes the connection.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 23

https://git.gnunet.org/lsd0003.git/plain/statemachine/full_state_machine.png

MSG SIZE

MSG TYPE

ELEMENT COUNT

APX

APPLICATION DATA

6.1.2. Structure

where:

is a 16-bit unsigned integer in network byte order, which describes the message size in
bytes with the header included.

is the type of SETU_P2P_OPERATION_REQUEST as registered in GANA Considerations,
in network byte order.

is the number of the elements the requesting party has in its set, as a 32-bit
unsigned integer in network byte order.

is a SHA-512 hash that identifies the application.

is optional, variable-size application specific data that can be used by the
application to decide if it would like to answer the request.

Figure 20

 0 8 16 24 32 40 48 56
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | MSG SIZE | MSG TYPE | ELEMENT COUNT |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | APX
 +-----+-----+-----+-----+-----+-----+-----+-----+
 / APPLICATION DATA /
 / /

6.2. IBF
6.2.1. Description

The IBF message contains a slice of the IBF.

The IBF message is sent at the start of the protocol from the initiating peer in the transaction
between Expect SE -> Expecting IBF Last or when the IBF does not decode and there is a role
change in the transition between Active Decoding -> Expecting IBF Last. This message is only
sent if there is more than one IBF slice to be sent. If there is just one slice, then only the IBF Last
message is sent.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 24

MSG SIZE

MSG TYPE

IBF SIZE

OFFSET

SALT

IMCS

IBF-SLICE

6.2.2. Structure

where:

is a 16-bit unsigned integer in network byte orderwhichdescribes the message size in
bytes with the header included.

the type of SETU_P2P_REQUEST_IBF as registered in GANA Considerations in network
byte order.

is a 32-bit unsigned integer which signals the total number of buckets in the IBF. The
minimal number of buckets is 37.

is a 32-bit unsigned integer which signals the offset of the following IBF slices in the
original.

is a 16-bit unsigned integer that contains the IBF-salt which was used to create the IBF.

is a 16-bit unsigned integer, which describes the number of bits that are required to store a
single counter. This is used for the unpacking function as described in the Variable Counter
Size section.

are variable numbers of slices in an array. A single slice contains multiple 64-bit
IDSUMS, 32-bit HASHSUMS and (1-64)-bit COUNTERS of variable size. All values are in the
network byte order. The array of IDSUMS is serialized first, followed by an array of
HASHSUMS. Last comes an array of unsigned COUNTERS (details of the COUNTERS
encoding are described in section Section 7.2). The length of the array is defined by MIN(
SIZE - OFFSET, MAX_BUCKETS_PER_MESSAGE). MAX_BUCKETS_PER_MESSAGE is defined as
32768 divided by the BUCKET_SIZE which ranges between 97-bits when counter uses bit 1
(IMCS=1) and 160-bit when counter size uses 64 bit (IMCS=64).

To get the IDSUM field, all IDs (computed with the IBF-salt) hitting a bucket under the map
M are added up with a binary XOR operation. See Salted Element ID Calculation details
about ID generation.

Figure 21

 0 8 16 24 32 40 48 56
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | MSG SIZE | MSG TYPE | IBF SIZE |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | OFFSET | SALT | IMCS |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | IBF-SLICE
 +-----+-----+-----+-----+-----+-----+-----+-----+
 / /
 / /

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 25

The calculation of the HASHSUM field is done accordingly to the calculation of the IDSUM
field: all HASHes are added up with a binary XOR operation. The HASH value is calculated
as described in detail in section HASH calculation.

The algorithm to find the correct bucket in which the ID and the HASH have to be added is
described in detail in section Mapping Function.

Test vectors for an implementation can be found in the Test Vectors section

Figure 22

 IBF-SLICE
 0 8 16 24 32 40 48 56
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | IDSUMS |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | IDSUMS |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | HASHSUMS | HASHSUMS |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | COUNTERS* | COUNTERS* |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 / /
 / /
* Counter size is variable. In this example the IMCS is 32 (4 bytes).

6.3. IBF Last
6.3.1. Description

This message indicates to the remote peer that this is the last slice of the Bloom filter. The
receiving peer MUST check that the sizes and offsets of all received IBF slices add up to the total
IBF SIZE that was given.

Receiving this message initiates the state transmissions Expecting IBF Last -> Active Decoding,
Expecting IBF -> Active Decoding and Passive Decoding -> Active Decoding. This message can
initiate a peer the roll change from Active Decoding to Passive Decoding.

6.3.2. Structure

The binary structure is exactly the same as the Structure of the message IBF with a different "MSG
TYPE" which is defined in GANA Considerations "SETU_P2P_IBF_LAST".

6.4. Element
6.4.1. Description

The Element message contains an element that is synchronized in the Differential
Synchronisation Mode and transmits a full element between the peers.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 26

This message is sent in the state Active Decoding and Passive Decoding as answer to a Demand
message from the remote peer. The Element message can also be received in the Finish Closing or
Finish Waiting state after receiving a Done message from the remote peer. In this case the peer
changes to the Finished state as soon as all demands for elements have been satisfied.

This message is exclusively used in the Differential Synchronisation Mode.

MSG SIZE

MSG TYPE

E TYPE

PADDING

E SIZE

DATA

6.4.2. Structure

where:

is a 16-bit unsigned integer in network byte order, which describes the message size in
bytes with the header included.

is SETU_P2P_ELEMENTS as registered in GANA Considerations in network byte order.

is a 16-bit unsigned integer which defines the element type for the application.

is 16-bit always set to zero.

is a 16-bit unsigned integer that signals the size of the elements data part.

is a field with variable length that contains the data of the element.

Figure 23

 0 8 16 24 32 40 48 56
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | MSG SIZE | MSG TYPE | E TYPE | PADDING |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | E SIZE | DATA
 +-----+-----+-----+-----+-----+-----+-----+-----+
 / /
 / /

6.5. Offer
6.5.1. Description

The Offer message is an answer to an Inquiry message and transmits the full hash of an element
that has been requested by the other peer. This full hash enables the other peer to check if the
element is really missing in his set and eventually sends a Demand message for that element.

The offer is sent and received only in the Active Decoding and in the Passive Decoding state.

This message is exclusively sent in the Differential Synchronisation Mode.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 27

MSG SIZE

MSG TYPE

HASH n

6.5.2. Structure

where:

is a 16-bit unsigned integer in network byte order, which describes the message size in
bytes header included.

is SETU_P2P_OFFER as registered in GANA Considerations in network byte order.

contains n (one or more) successive SHA 512-bit hashes of the elements that are being
requested with Inquiry messages.

Figure 24

 0 8 16 24 32 40 48 56
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | MSG SIZE | MSG TYPE | HASH 1
 +-----+-----+-----+-----+-----+-----+-----+-----+

 +-----+-----+-----+-----+-----+-----+-----+-----+
 HASH 1 | HASH 2
 +-----+-----+-----+-----+-----+-----+-----+-----+

 +-----+-----+-----+-----+-----+-----+-----+-----+
 HASH 2 | HASH n
 +-----+-----+-----+-----+-----+-----+-----+-----+
 / /
 / /

6.6. Inquiry
6.6.1. Description

The Inquiry message is exclusively sent by the active peer in Active Decoding state to request the
full hash of an element that is missing in the active peers set. This is normally answered by the
passive peer with Offer message.

This message is exclusively sent in the Differential Synchronisation Mode.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 28

MSG SIZE

MSG TYPE

IBF KEY

6.6.2. Structure

where:

is a 16-bit unsigned integer in network byte order, which describes the message size in
bytes with the header included.

is SETU_P2P_INQUIRY as registered in GANA Considerations in network byte order.

contains n (one or more) successive ibf keys (64-bit unsigned integer) for which the
inquiry is sent.

Figure 25

 0 8 16 24 32 40 48 56
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | MSG SIZE | MSG TYPE | SALT |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | IBF KEY 1 |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | IBF KEY 2 |
 +-----+-----+-----+-----+-----+-----+-----+-----+

 +-----+-----+-----+-----+-----+-----+-----+-----+
 | IBF KEY n |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 / /
 / /

6.7. Demand
6.7.1. Description

The Demand message is sent in the Active Decoding and in the Passive Decoding state. It is an
answer to a received Offer message and is sent if the element described in the Offer message is
missing in the peers set. In the normal workflow the answer to the Demand message is an Element
message.

This message is exclusively sent in the Differential Synchronisation Mode.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 29

MSG SIZE

MSG TYPE

HASH n

6.7.2. Structure

where:

is a 16-bit unsigned integer in network byte order, which describes the message size in
bytes and the header is included.

the type of SETU_P2P_DEMAND as registered in GANA Considerations in network
byte order.

contains n (one or more) successive SHA 512-bit hashes of the elements that are being
demanded.

Figure 26

 0 8 16 24 32 40 48 56
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | MSG SIZE | MSG TYPE | HASH 1
 +-----+-----+-----+-----+-----+-----+-----+-----+

 +-----+-----+-----+-----+-----+-----+-----+-----+
 HASH 1 | HASH 2
 +-----+-----+-----+-----+-----+-----+-----+-----+

 +-----+-----+-----+-----+-----+-----+-----+-----+
 HASH 2 | HASH n
 +-----+-----+-----+-----+-----+-----+-----+-----+
 / /
 / /

6.8. Done
6.8.1. Description

The Done message is sent when all Demand messages have been successfully satisfied and from
the perspective of the sender the set is completely synchronized.

This message is exclusively sent in the Differential Synchronisation Mode.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 30

MSG SIZE

MSG TYPE

FINAL CHECKSUM

6.8.2. Structure

where:

is a 16-bit unsigned integer in network byte order, which describes the message size in
bytes with the header included. The value is always 4 for this message type.

is SETU_P2P_DONE as registered in GANA Considerations in network byte order.

a SHA-512 hash XOR sum of the full set after synchronization. This should
ensure that the sets are identical in the end!

Figure 27

 0 8 16 24 32 40 48 56
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | MSG SIZE | MSG TYPE | FINAL CHECKSUM
 +-----+-----+-----+-----+-----+-----+-----+-----+
 / /
 / /

6.9. Full Done
6.9.1. Description

The Full Done message is sent in the Full Synchronisation Mode to signal that all remaining
elements of the set have been sent. The message is received and sent in the Full Sending and in
the Full Receiving state. When the Full Done message is received in Full Sending state the peer
changes directly into Finished state. In Full Receiving state receiving a Full Done message
initiates the sending of the remaining elements that are missing in the set of the other peer.

MSG SIZE

6.9.2. Structure

where:

is a 16-bit unsigned integer in network byte order, which describes the message size in
bytes with the header included. The value is always 4 for this message type.

Figure 28

 0 8 16 24 32 40 48 56
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | MSG SIZE | MSG TYPE | FINAL CHECKSUM
 +-----+-----+-----+-----+-----+-----+-----+-----+
 / /
 / /

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 31

MSG TYPE

FINAL CHECKSUM

the type of SETU_P2P_FULL_DONE as registered in GANA Considerations in network
byte order.

a SHA-512 hash XOR sum of the full set after synchronization. This should
ensure that the sets are identical in the end!

6.10. Request Full
6.10.1. Description

The Request Full message is sent by the initiating peer in Expect SE state to the receiving peer, if
the operation mode "Full Synchronisation Mode" is determined to be the superior Mode of
Operation and that it is the better choice that the other peer sends his elements first. The initiating
peer changes after sending the Request Full message into Full Receiving state.

The receiving peer receives the Request Full message in the Expecting IBF, afterwards the
receiving peer starts sending his complete set in Full Element messages to the initiating peer.

MSG SIZE

MSG TYPE

REMOTE SET DIFF

REMOTE SET SIZE

LOCAL SET DIFF

6.10.2. Structure

where:

is a 16-bit unsigned integer in network byte order, which describes the message size in
bytes with the header included. The value is always 16 for this message type.

is SETU_P2P_REQUEST_FULL as registered in GANA Considerations in network byte
order.

is a 32-bit unsigned integer in network byte order, which represents the
remote (from the perspective of the sending peer) set difference calculated with strata
estimator.

is a 32-bit unsigned integer in network byte order, which represents the total
remote (from the perspective of the sending peer) set size.

is a 32-bit unsigned integer in network byte order, which represents the local
(from the perspective of the sending peer) set difference calculated with strata estimator.

Figure 29

 0 8 16 24 32 40 48 56
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | MSG SIZE | MSG TYPE | REMOTE SET DIFF |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | REMOTE SET SIZE | LOCAL SET DIFF |
 +-----+-----+-----+-----+-----+-----+-----+-----+

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 32

6.11. Send Full
6.11.1. Description

The Send Full message is sent by the initiating peer in Expect SE state to the receiving peer if the
operation mode "Full Synchronisation Mode" is determined as superior Mode of Operation and
that it is the better choice that the peer sends his elements first. The initiating peer changes after
sending the Request Full message into Full Sending state.

The receiving peer receives the Send Full message in the Expecting IBF state, afterwards the
receiving peer changes into Full Receiving state and expects to receive the set of the remote peer.

MSG SIZE

MSG TYPE

REMOTE SET DIFF

REMOTE SET SIZE

LOCAL SET DIFF

6.11.2. Structure

where:

is a 16-bit unsigned integer in network byte order, which describes the message size in
bytes with the header included. The value is always 16 for this message type.

is SETU_P2P_REQUEST_FULL as registered in GANA Considerations in network byte
order.

is a 32-bit unsigned integer in network byte order, which represents the
remote (from the perspective of the sending peer) set difference calculated with strata
estimator.

is a 32-bit unsigned integer in network byte order, which represents the total
remote (from the perspective of the sending peer) set size.

is a 32-bit unsigned integer in network byte order, which represents the local
(from the perspective of the sending peer) set difference calculated with strata estimator.

Figure 30

 0 8 16 24 32 40 48 56
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | MSG SIZE | MSG TYPE | REMOTE SET DIFF |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | REMOTE SET SIZE | LOCAL SET DIFF |
 +-----+-----+-----+-----+-----+-----+-----+-----+

6.12. Strata Estimator
6.12.1. Description

The strata estimator is sent by the receiving peer at the start of the protocol, right after the
Operation Request message has been received.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 33

The strata estimator is used to estimate the difference between the two sets as described in
section Strata Estimator.

When the initiating peer receives the strata estimator, the peer decides which Mode of Operation
to use for the synchronisation. Depending on the size of the set difference and the Mode of
Operation the initiating peer changes into Full Sending, Full Receiving or Passive Decoding
state.

The Strata Estimator message can contain one, two, four or eight strata estimators with different
salts, depending on the initial size of the sets. More details can be found in section Multi Strata
Estimators.

The IBFs in a strata estimator always have 79 buckets. The reason why can be found in
 in section 3.4.2.[byzantine_fault_tolerant_set_reconciliation]

MSG SIZE

MSG TYPE

SEC

SETSIZE

SE-SLICES

6.12.2. Structure

where:

is a 16-bit unsigned integer in network byte order, which describes the message size in
bytes with the header included.

is SETU_P2P_SE as registered in GANA Considerations in network byte order.

is a 8-bit unsigned integer in network byte order, which indicates how many strata
estimators with different salts are attached to the message. Valid values are 1,2,4 or 8, more
details can be found in the section Multi Strata Estimators.

is a 64-bit unsigned integer that is defined by the size of the set the SE is

are variable numbers of slices in an array. A slice can contain one or more Strata
Estimators which contain multiple IBFs as described in IBF-SLICES in Section 6.2.2. A SE
slice can contain one to eight Strata Estimators which contain 32 (Defined as Constant
SE_STRATA_COUNT) IBFs. Every IBF in a SE contains 79 Buckets.

Figure 31

 0 8 16 24 32 40 48 56
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | MSG SIZE | MSG TYPE | SEC | SETSIZE
 +-----+-----+-----+-----+-----+-----+-----+-----+
 SETSIZE | SE-SLICES
 +-----+-----+-----+-----+-----+-----+-----+-----+
 / /
 / /

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 34

The different SEs are built as in detail described in Section 7.3. Simply put, the IBFs in each
SE are serialized as described in Section 6.2.2 starting with the highest stratum. Then the
created SEs are appended one after the other starting with the SE that was created with a
salt of zero.

Figure 32

 SE-SLICE
 0 8 16 24 32 40 48 56
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | SE_1 -> IBF_1
 +-----+-----+-----+-----+-----+-----+-----+-----+

 +-----+-----+-----+-----+-----+-----+-----+-----+
 | SE_1 -> IBF_30
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | SE_2 -> IBF_1
 +-----+-----+-----+-----+-----+-----+-----+-----+

 / /
 / /

6.13. Strata Estimator Compressed
6.13.1. Description

The Strata Estimator can be compressed with gzip as described in to improve
performance. This can be recognized by the different message type number from GANA
Considerations.

[RFC1951]

6.13.1.1. Structure
The key difference between the compressed and the uncompressed Strata Estimator is that the SE
slices are compressed with gzip () in the compressed SE. But the header remains
uncompressed with both.

Since the content of the message is the same as the uncompressed Strata Estimator, the details are
not repeated here. For details see section 6.12.

[RFC1951]

6.14. Full Element
6.14.1. Description

The Full Element message is the equivalent of the Element message in the Full Synchronisation
Mode. It contains a complete element that is missing in the set of the peer that receives this
message.

The Full Element message is exclusively sent in the transitions Expecting IBF -> Full Receiving
and Full Receiving -> Finished. The message is only received in the Full Sending and Full
Receiving state.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 35

After the last Full Element message has been sent, the Full Done message is sent to conclude the
full synchronisation of the element sending peer.

MSG SIZE

MSG TYPE

E TYPE

PADDING

E SIZE

AE TYPE

DATA

6.14.2. Structure

where:

is a 16-bit unsigned integer in network byte order, which describes the message size in
bytes with the header included.

is SETU_P2P_REQUEST_FULL_ELEMENT as registered in GANA Considerations in
network byte order.

is a 16-bit unsigned integer which defines the element type for the application.

is 16-bit always set to zero

is a 16-bit unsigned integer that signals the size of the elements data part.

is a 16-bit unsigned integer that is needed to identify the type of element that is in the
data field

is a field with variable length that contains the data of the element.

Figure 33

 0 8 16 24 32 40 48 56
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | MSG SIZE | MSG TYPE | E TYPE | PADDING |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | SIZE | AE TYPE | DATA
 +-----+-----+-----+-----+-----+-----+-----+-----+
 / /
 / /

7. Performance Considerations

7.1. Formulas
7.1.1. Operation Mode

The decision which Mode of Operation is used is described by the following code. More detailed
explanations motivating the design can be found in the accompanying thesis in section 4.5.3.

The function takes as input the average element size, the local set size, the remote set size, the set
differences as estimated from the strata estimator for both the local and remote sets, and the
bandwidth/roundtrip tradeoff. The function returns the exact Mode of Operation that is predicted
to be best as output: FULL_SYNC_REMOTE_SENDING_FIRST if it is likely cheapest that the other

[byzantine_fault_tolerant_set_reconciliation]

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 36

peer transmits his elements first, FULL_SYNC_LOCAL_SENDING_FIRST if it is likely cheapest that
the elements are transmitted to the other peer directly, and DIFFERENTIAL_SYNC if the
differential synchronisation is likely cheapest.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 37

The constant IBF_BUCKET_NUMBER_FACTOR is always 2 and IBF_MIN_SIZE is 37. The method for
deriving this can be found in the IBF parameter study in

 in section 4.5.2.[byzantine_fault_tolerant_set_reconciliation]

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 38

CONSTANTS:
IBF_BUCKET_NUMBER_FACTOR = 2: The amount the IBF gets increased if
decoding fails
RTT_MIN_FULL = 2: Minimal round trips used for full Synchronisation
IBF_MIN_SIZE = 37: The minimal size of an IBF
MAX_BUCKETS_PER_MESSAGE: Custom value depending on the underlying
protocol
INPUTS:
avg_es: The average element size
lss: The initial local set size
rss: The remote set size
lsd: the estimated local set difference calculated by the SE
rsd: the estimated remote set difference calculated by the SE
rtt: the tradeoff between round trips and bandwidth
OUTPUT:
FULL_SYNC_REMOTE_SENDING_FIRST, FULL_SYNC_LOCAL_SENDING_FIRST or
DIFFERENTIAL_SYNC

FUNCTION decide_operation_mode(avg_es,
 lss,
 rss,
 lsd
 rsd,
 rtt)

 # If a set size is zero always do full sync
 IF 0 == rss THEN
 RETURN FULL_SYNC_LOCAL_SENDING_FIRST
 END IF
 IF 0 == lss THEN
 RETURN FULL_SYNC_REMOTE_SENDING_FIRST
 END IF

 # Estimate required transferred bytes when doing a full
 # synchronisation and transmitting local set first.
 semh = sizeof(ELEMENT_MSG_HEADER)
 estimated_total_diff = rsd + lsd
 total_elements_local_send = rsd + lss
 cost_local_full_sync = avg_es * total_elements_local_send
 + total_elements_local_send * semh
 + sizeof(FULL_DONE_MSG_HEADER) * 2
 + RTT_MIN_FULL * rtt

 # Estimate required transferred bytes when doing a full
 # synchronisation and transmitting remote set first.
 total_elements_remote_send = lsd + rss
 cost_remote_full_sync = avg_es * total_elements_remote_send
 + total_elements_remote_send * semh
 + sizeof(FULL_DONE_MSG_HEADER) * 2
 + (RTT_MIN_FULL + 0.5) * rtt
 + sizeof(REQUEST_FULL_MSG)

 # Estimate required transferred bytes when doing a differential
 # synchronisation

 # Estimate messages required to transfer IBF
 ibf_bucket_count = estimated_total_diff * IBF_BUCKET_NUMBER_FACTOR

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 39

Figure 34

 IF ibf_bucket_count <= IBF_MIN_SIZE THEN
 ibf_bucket_count = IBF_MIN_SIZE
 END IF
 ibf_message_count = ceil (ibf_bucket_count / MAX_BUCKETS_PER_MESSAGE)

 # Estimate average counter length with variable counter
 estimated_counter_bits = MIN (2 * LOG2(lss / ibf_bucket_count),
 LOG2(lss))
 estimated_counter_bytes = estimated_counter_bits / 8

 # Sum up all messages required to do differential synchronisation
 ibf_bytes = sizeof(IBF_MESSAGE) * ibf_message_count
 + ibf_bucket_count * sizeof(IBF_KEY)
 + ibf_bucket_count * sizeof(IBF_KEYHASH)
 + ibf_bucket_count * estimated_counter_bytes
 # Add 20% overhead to cover IBF retries due to decoding failures
 total_ibf_bytes = ibf_bytes * 1.2

 # Estimate other message sizes to be transfered in diff sync
 # Note that we simplify by adding the header each time;
 # if the implementation combines multiple INQUIRY/DEMAND/OFFER
 # requests in one message, the bandwidth would be lower.
 done_size = sizeof(DONE_HEADER)
 element_size = (avg_es + sizeof(ELEMENT_MSG_HEADER))
 * estimated_total_diff
 inquery_size = (sizeof(IBF_KEY) + sizeof(INQUERY_MSG_HEADER))
 * estimated_total_diff
 demand_size = (sizeof(HASHCODE) + sizeof(DEMAND_MSG_HEADER))
 * estimated_total_diff
 offer_size = (sizeof(HASHCODE) + sizeof(OFFER_MSG_HEADER))
 * estimated_total_diff

 # Estimate total cost
 diff_cost = element_size + done_size + inquery_size
 + demand_size + offer_size + total_ibf_bytes
 + DIFFERENTIAL_RTT_MEAN * rtt

 # Decide for a optimal mode of operation
 full_cost_min = MIN (cost_local_full_sync,
 cost_remote_full_sync)
 IF full_cost_min < diff_cost THEN
 IF cost_remote_full_sync > cost_local_full_sync THEN
 RETURN FULL_SYNC_LOCAL_SENDING_FIRST
 ELSE
 RETURN FULL_SYNC_REMOTE_SENDING_FIRST
 END IF
 ELSE
 RETURN DIFFERENTIAL_SYNC
 END IF
END FUNCTION

7.1.2. IBF Size

The functions, described in this section, calculate a good initial size (initial_ibf_size) and in case of
decoding failure, a good next IBF size (get_next_ibf_size).

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 40

These algorithms are described and justified in more details in
 in the parameter study in section 3.5.2, the max IBF

counter in section 3.10 and the Improved IBF size in section 3.11.
[byzantine_fault_tolerant_set_reconciliation]

Figure 35

CONSTANTS:
IBF_BUCKET_NUMBER_FACTOR = 2: The amount the IBF gets increased
 if decoding fails
Inputs:
sd: Estimated set difference
Output:
next_size: Size of the initial IBF

FUNCTION initial_ibf_size(sd)
 # We do not go below 37, as 37 buckets should
 # basically always be below one MTU, so there is
 # little to be gained, while a smaller IBF would
 # increase the chance of a decoding failure.
 RETURN MAX(37, IBF_BUCKET_NUMBER_FACTOR * sd);
END FUNCTION

CONSTANTS:
IBF_BUCKET_NUMBER_FACTOR = 2: The amount the IBF gets increased if
decoding fails
Inputs:
de: Number of elements that have been successfully decoded
lis: The number of buckets of the last IBF
Output:
number of buckets for the next IBF

FUNCTION get_next_ibf_size(de, lis)
 next_size = IBF_BUCKET_NUMBER_FACTOR * (lis - de)
 # The MAX operation here also ensures that the
 # result is positive.
 RETURN MAX(37, next_size);
END FUNCTION

7.1.3. Number of Buckets an Element is Hashed into

The number of buckets an element is hashed to is hardcoded to 3. Reasoning and justification can
be found in in the IBF parameter performance
study in section 4.5.2.

[byzantine_fault_tolerant_set_reconciliation]

7.2. Variable Counter Size
The number of bits required to represent the counters of an IBF varies due to different
parameters as described in section 3.2 of .
Therefore, a packing algorithm has been implemented. This algorithm encodes the IBF counters
in their optimal bit-width and thus minimizes the bandwidth needed to transmit the IBF.

[byzantine_fault_tolerant_set_reconciliation]

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 41

A simple algorithm is used for the packing. In a first step it is determined, which is the largest
counter. The the base 2 logarithm then determines how many bits are needed to store it. In a
second step for every counter of every bucket, the counter is stored using this many bits. The
resulting bit sequence is then simply concatenated.

Three individual functions are used for this purpose. The first one is a function that iterates over
each bucket of the IBF to get the maximum counter in the IBF. The second function packs the
counters of the IBF, and the third function that unpacks the counters.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 42

As a plausibly check to prevent the byzantine upper bound checks in Section 8.1.2 to fail,
implementations must ensure that the estimates of the set size difference added together never
exceed the set byzantine upper bound. This could for example happen in case the strata estimator
overestimates the set difference.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 43

INPUTS:
ibf: The IBF
OUTPUTS:
returns: Minimal amount of bits required to store the counter

FUNCTION ibf_get_max_counter(ibf)
 max_counter=1 # convince static analysis that we never take log2(0)
 FOR bucket IN ibf DO
 IF bucket.counter > max_counter THEN
 max_counter = bucket.counter
 END IF
 END FOR
 # next bigger discrete number of the binary logarithm of the
 # max counter
 RETURN CEILING(LOG2(max_counter))
END FUNCTION

INPUTS:
ibf: The IBF
offset: The offset which defines the starting point from which bucket
the pack operation starts
count: The number of buckets in the array that will be packed
OUTPUTS:
returns: A byte array of packed counters to send over the network

INPUTS:
ibf: The IBF
offset: The offset which defines the starting point from which bucket
the pack operation starts
count: The number of buckets in the array that will be packed
OUTPUTS:
returns: A byte array of packed counters to send over the network

FUNCTION pack_counter(ibf, offset, count)
 counter_bytes = ibf_get_max_counter(ibf)
 store_bits = 0
 store = 0
 byte_ctr = 0
 buf=[]

 FOR bucket IN ibf[offset] TO ibf[count] DO
 counter = bucket.counter
 byte_len = counter_bytes

 WHILE byte_len + store_bits < 8 DO
 bit_to_shift = 0

 IF store_bits > 0 OR byte_len > 8 THEN
 bit_free = 8 - store_bits
 bit_to_shift = byte_len - bit_free
 store = store << bit_free
 END IF
 buf[byte_ctr] = ((counter >> bit_to_shift) | store) & 0xFF
 byte_ctr = byte_ctr + 1
 byte_len -= 8 - store_bits
 counter = counter & ((1 << byte_len) - 1)

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 44

 store = 0
 store_bits = 0
 END WHILE
 store = (store << byte_len) | counter
 store_bits = store_bits + byte_len
 byte_len = 0
 END FOR

 # Write the last partial packed byte to the buffer
 IF store_bits > 0 THEN
 buf[byte_ctr] = store << (8 - store_bits)
 byte_ctr = byte_ctr + 1
 END IF

 RETURN buf
FUNCTION END

INPUTS:
ibf: The IBF
offset: The offset which defines the starting point from which bucket
 the packed operation starts
count: The number of buckets in the array that will be packed
cbl: The bit length of the counter can be found in the
 ibf message in the ibf_counter_bit_length field
pd: A byte array which contains the data packed with the pack_counter
 function
OUTPUTS:
returns: Nothing because the unpacked counter is saved directly
 into the IBF

FUNCTION unpack_counter(ibf, offset, count, cbl, pd)
 ibf_bucket_ctr = 0
 store = 0
 store_bits = 0
 byte_ctr = 0

 WHILE TRUE
 byte_read = pd[byte_ctr]
 bit_to_pack_left = 8
 byte_ctr++

 WHILE bit_to_pack_left >= 0 DO

 # Prevent packet from reading more than required
 IF ibf_bucket_ctr > (count - 1) THEN
 RETURN
 END IF

 IF store_bits + bit_to_pack_left >= cbl THEN
 bit_use = cbl - store_bits

 IF store_bits > 0 THEN
 store = store << bit_use
 END IF
 bytes_to_shift = bit_to_pack_left - bit_use
 counter_partial = byte_read >> bytes_to_shift
 store = store | counter_partial
 ibf.counter[ibf_bucket_ctr + offset] = store

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 45

Figure 36

 byte_read = byte_read & ((1 << bytes_to_shift) - 1)

 bit_to_pack_left -= bit_use
 ibf_bucket_ctr++
 store = 0
 store_bits = 0
 ELSE
 store_bits = store_bits + bit_to_pack_left

 IF 0 == store_bits THEN
 store = byte_read
 ELSE
 store = store << bit_to_pack_left
 store = store | byte_read
 END IF
 BREAK
 END IF
 END WHILE
 END WHILE
END FUNCTION

SEs

1

2

4

8

7.3. Multi Strata Estimators
In order to improve the precision of the estimates not only one strata estimator is transmitted for
larger sets. One, two, four or eight strata estimators can be transferred. Transmitting multiple
strata estimators has the disadvantage that additional bandwidth will be used, so despite the
higher precision, it is not always optimal to transmit eight strata estimators. Therefore, the
following rules are used, which are based on the average element size multiplied by the number of
elements in the set. This value is denoted as "b" in the table:

Rule

b < 68kb

b > 68kb

b > 269kb

b > 1'077kb

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 46

When creating multiple strata estimators, it is important to salt the keys for the IBFs in the strata
estimators differently, using the following bit rotation based salting method:

Performance study and details about the reasoning for the used methods can be found in
 in section 3.4.1 under the title "Added Support for

Multiple Strata Estimators".

Figure 37

Inputs:
value: Input value to salt (needs to be 64 bit unsigned)
salt: Salt to salt value with; Should always be ascending and start
at zero
 i.e. SE1 = Salt 0; SE2 = Salt 1 etc.
Output:
Returns: Salted value

FUNCTION se_key_salting(value, salt)
 s = (salt * 7) modulo 64
 RETURN (value >> s) | (value << (64 - s))
END FUNCTION

[byzantine_fault_tolerant_set_reconciliation]
[byzantine_fault_tolerant_set_reconciliation]

8. Security Considerations
The security considerations in this document focus mainly on the security goal of availability. The
primary goal of the protocol is to prevent an attacker from wasting computing and network
resources of the attacked peer.

To prevent denial of service attacks, it is vital to check that peers can only reconcile a set once in
a predefined time span. This is a predefined value and needs to be adapted per use basis. To
enhance reliability and to allow for legitimate failures, say due to network connectivity issues,
applications SHOULD define a threshold for the maximum number of failed reconciliation
attempts in a given time period.

It is important to close and purge connections after a given timeout to prevent draining attacks.

8.1. General Security Checks
In this section general checks are described which should be applied to multiple states.

8.1.1. Input validation

The format of all received messages needs to be properly validated. This is important to prevent
many attacks on the code. The application data MUST be validated by the application using the
protocol not by the implementation of the protocol. In case the format validation fails the set
operation MUST be terminated.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 47

8.1.2. Byzantine Boundaries

To restrict an attacker there should be an upper and lower bound defined and checked at the
beginning of the protocol, based on prior knowledge, for the number of elements. The lower
byzantine bound can be, for example, the number of elements the other peer had in his set at the
last contact. The upper byzantine bound can be a practical maximum e.g. the number of e-voting
votes, in Switzerland.

Figure 38

Input:
rec: Number of elements in remote set
rsd: Number of elements differ in remote set
lec: Number of elements in local set
lsd: Number of elements differ in local set
UPPER_BOUND: Given byzantine upper bound
LOWER_BOUND: Given byzantine lower bound
Output:
returns TRUE if parameters in byzantine bounds otherwise returns FALSE
FUNCTION check_byzantine_bounds (rec,rsd,lec,lsd)
 IF rec + rsd > UPPER_BOUND THEN
 RETURN FALSE
 END IF
 IF lec + lsd > UPPER_BOUND THEN
 RETURN FALSE
 END IF
 IF rec < LOWER_BOUND THEN
 RETURN FALSE
 END IF
 RETURN TRUE
END FUNCTION

8.1.3. Valid State

To harden the protocol against attacks, controls were introduced in the improved
implementation that check for each message whether the message was received in the correct
state. This is central so that an attacker finds as little attack surface as possible and makes it
more difficult for the attacker to send the protocol into an endless loop, for example.

8.1.4. Message Flow Control

For most messages received and sent there needs to be a check in place that checks that a
message is not received multiple times. This is solved with a global store (message) and the
following code

The sequence in which messages are received and sent is arranged in a chain. The messages are
dependent on each other. There are dependencies that are mandatory, e.g. for a sent "Demand"
message, an "Element" message must always be received. But there are also messages for which a

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 48

response is not mandatory, e.g. the Inquiry message is only followed by an "Offer" message, if the
corresponding element is in the set. Due to this fact, checks can be installed to verify compliance
with the following chain.

In the message control flow its important to ensure that no duplicated messages are received
(Except inquiries where collisions are possible) and only messages are received which are
compliant with the flow in Figure 39. To link messages the SHA-512 element hashes, that are part
of all messages, except in the Inquiry messages, can be used. To link an Inquiry message to an
Offer message the SHA-512 hash from the offer has to be salted and converted to the IBF-Key (as
described in Figure 7). The IBF-Key can be matched with the received Inquiry message.

At the end of the set reconciliation operation after receiving and sending the Done message, it
should be checked that all demands have been satisfied and all elements have been received.

This is based on , section 5.3 (Message Control
Flow).

Figure 39

Chain for
elements +---------+ +---------+ +---------+ +---------+
NOT in IBF | INQUIRY |--->| OFFER |===>| DEMAND |===>| ELEMENT |
decoding +---------+ +---------+ +---------+ +---------+
peers set

Chain for
elements +---------+ +---------+ +---------+
in IBF | OFFER |--->| DEMAND |===>| ELEMENT |
decoding +---------+ +---------+ +---------+
peers set

 --->: Answer not mandatory
 ===>: Always answer needed.

[byzantine_fault_tolerant_set_reconciliation]

8.1.5. Limit Active/Passive Decoding changes

To prevent an attacker from sending a peer into an endless loop between active and passive
decoding, a limitation for active/passive roll switches is required. Otherwise, an attacker could
force the victim to waste unlimited amount of resources by just transmitting IBFs that do not
decode. This can be implemented by a simple counter which terminates the operation after a
predefined number of switches. The maximum number of switches needs to be defined in such a
way that it is very improbable that more switches are required in a legitimate interaction, and
hence the malicious behavior of the other peer is assured.

The question after how many active/passive switches it can be assumed that the other peer is not
honest, depends on the various tuning parameters of the algorithm. Section 5.4 of

 demonstrates that the probability of decoding
failure is less than 15% for each round. The probability that there will be n legitimate active/
[byzantine_fault_tolerant_set_reconciliation]

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 49

passive changes is thus less than 0.15^{round number}. Which means that after about 30 active/
passive switches it can be said with a certainty of 2^80 that one of the peers is not following the
protocol. Hence, participants MUST impose a maximum of 30 active/passive changes.

8.1.6. Full Synchronisation Plausibility Check

An attacker can try to use up a peer's bandwidth by pretending that the peer needs full
synchronisation, even if the set difference is very small and the attacker only has a few (or even
zero) elements that are not already synchronised. In such a case, it would be ideal if the
plausibility could already be checked during full synchronisation as to whether the other peer
was honest or not with regard to the estimation of the set size difference and thus the choice of
mode of operation.

In order to calculate this plausibility, section 5.5 of
describes a formula, which depicts the probability with which one can calculate the
corresponding plausibility based on the number of new and repeated elements after each
received element.

Besides this approach from probability theory, there is an additional check that can be made.
After the entire set has been transferred to the other peer, no known elements may be returned by
the second peer, since the second peer should only return the elements that are missing from the
initial peer's set.

[byzantine_fault_tolerant_set_reconciliation]

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 50

This two approaches are implemented in the following pseudocode:

Figure 40

Input:
SECURITY_LEVEL: The security level used e.g. 2^80
state: The statemachine state
rs: Estimated remote set difference
lis: Number of elements in set
rd: Number of duplicated elements received
rf: Number of fresh elements received
Output:
Returns TRUE if full synchronisation is plausible and FALSE otherwise

FUNCTION full_sync_plausibility_check (state,rs,lis,rd,rf)
 security_level_lb = -1 * SECURITY_LEVEL

 # Make sure that no element is received double when
 # all elements already are transmitted to the oder side.
 IF FULL_SENDING == state AND rd > 0 THEN
 RETURN FALSE
 END IF

 # Probabilistic algorithm to check for plausible
 # element distribution
 IF FULL_RECEIVING == state THEN

 # Prevent division by 0
 IF 0 <= rs THEN
 rs = 1
 END IF

 # Formula to verify plausibility
 base = 1 - (rs / (lis + rs))
 exponent = rd - rf * lis / rs
 value = exponent * (LOG2(base)/LOG2(2))
 IF value < security_level_lb OR value > SECURITY_LEVEL THEN
 RETURN FALSE
 END IF
 END IF
 RETURN TRUE
END FUNCTION

8.2. States
In this section the security considerations for each valid message in all states is described, if any
other message is received the peer MUST terminate the operation.

Request Full

8.2.1. Expecting IBF

Security considerations for received messages:

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 51

IBF

Send Full

It needs to be checked that the full synchronisation mode with receiving peer sending first
is plausible according to the algorithm deciding which operation mode is applicable as
described in Section 7.1.1.

It needs to be checked that the differential synchronisation mode is plausible according to
the algorithm deciding which operation mode is applicable as described in Section 7.1.1.

It needs to be checked that the full synchronisation mode with initiating peer sending
first is plausible according to the algorithm deciding which operation mode is applicable as
described in Section 7.1.1.

Full Element

Full Done

8.2.2. Full Sending

Security considerations for received messages:

When receiving full elements there needs to be checked, that every element is a
valid element, that no element has been received more than once, and that not more
elements have been received than the other peer has committed to at the beginning of the
operation. The plausibility should also be checked with an algorithm as described in Section
8.1.6.

When receiving the Full Done message, it is important to check that not fewer
elements have been received than the other peer has committed to send at the beginning of
the operation. If the sets differ (the FINAL CHECKSUM field in the Full Done message does
not match to the SHA-512 hash XOR sum of the local set), the operation has failed and the
reconciliation MUST be aborted. It is a strong indicator that something went wrong (eg.
some hardware bug). This should never occur!

IBF

IBF Last

8.2.3. Expecting IBF Last

Security considerations for received messages:

The application should check that the overall size of the IBF that is being transmitted is
within its resource bounds, and abort the protocol if its resource limits are likely to be
exceeded, or if the size is implausible for the given operation.

It needs to be checked that the offset (message field "OFFSET") for every received IBF
message is strictly monotonic increasing and is a multiple of the
MAX_BUCKETS_PER_MESSAGE defined in the Constants section, otherwise the connection
MUST be aborted.

Another sanity check is to ensure that the "OFFSET" message field never is higher than the
"IBF SIZE" field in the IBF message.

When all IBF messages have been received an IBF Last message should conclude the
transmission of the IBF and a change to the Active Decoding phase should be ensured.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 52

To verify that all IBFs have been received, a simple validation can be made. The number of
buckets in the IBF Last message added to the value in the message OFFSET field should
always be equal to the "IBF SIZE".

Further plausibility checks can be made. One is to ensure that after each active/passive
switch the IBF can never be more than double in size. Another plausibility check is that an
IBF probably never will be larger than the byzantine upperbound multiplied by two. The
third plausibility check is to take successfully decoded IBF keys (received offers and
demands) into account and to validate the size of the received IBF with the in Figure 35
described function get_next_ibf_size(). If any of these three checks fail the operation must
be aborted.

Offer

8.2.4. Active Decoding

In the Active Decoding state it is important to prevent an attacker from generating and
transmitting an unlimited number of IBFs that all do not decode, or to generate an IBF
constructed to send the peers in an endless loop. To prevent an endless loop in decoding, loop
detection MUST be implemented. A solution to prevent endless loop is to limit the number of
elements decoded from an IBF. This limit is defined by the number of buckets in the IBF. It is not
possible that more elements are decoded from an IBF than an IBF has buckets. If more elements
than buckets are in an IBF it is not possible to get pure buckets. An additional check that should
be implemented, is to store all element IDs that were prior decoded. When a new element ID is
decoded from the IBF it should always be checked that no element ID is repeated. If the same
element ID is decoded more than once, this is a strong indication for an invalid IBF and the
operation MUST be aborted. Notice that the decoded element IDs are salted as described in Figure
7 so the described bit rotation needs to be reverted before the decoded element ID is stored and
compared to the previous decoded element IDs.

If the IBF decodes more elements than are plausible, the operation MUST be terminated.
Furthermore, if the IBF decoding successfully terminates and fewer elements were decoded than
plausible, the operation MUST also be terminated. The upper thresholds for decoded elements
from the IBF is the remote set size the other peer has committed too (Case if the complete remote
set is new). The lower threshold for decoding element is the absolute value of the difference
between the local and remote set size (Case the set difference is only in the set of a single peer).
The other peer's committed set sizes is transmitted in the the Expecting IBF state.

Security considerations for received messages:

If an offer for an element, that never has been requested by an inquiry or if an offer is
received twice, the operation MUST be terminated. This requirement can be fulfilled by
saving lists that keep track of the state of all sent inquiries and offers. When answering
offers these lists MUST be checked. The sending and receiving of Offer messages should
always be protected with an Message Flow Control to secure the protocol against missing,
duplicated, out-of-order or unexpected messages.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 53

Element

Demand

Done

If an element that never has been requested by a demand or is received twice, the
operation MUST be terminated. The sending and receiving of Element messages should
always be protected with an Message Flow Control to secure the protocol against missing,
duplicated, out-of-order or unexpected messages.

For every received demand an offer has to be sent in advance. If a demand for an
element is received, that never has been offered or the offer already has been answered
with a demand, the operation MUST be terminated. It is required to implement a list which
keeps track of the state of all sent offers and received demands. The sending and receiving
of Demand messages should always be protected with an Message Flow Control to secure
the protocol against missing, duplicated, out-of-order or unexpected messages.

The Done message is only received if the IBF has finished decoding and all offers have
been sent. If the Done message is received before the decoding of the IBF is finished or all
open demands have been answered, the operation MUST be terminated. If the sets differ
(the FINAL CHECKSUM field in the Done message does not match to the SHA-512 hash XOR
sum of the local set), the operation has failed and the reconciliation MUST be aborted. It is
a strong indicator that something went wrong (eg. some hardware bug). This should never
occur!

When a Done message is received the "check_if_synchronisation_is_complete()" function
from the Message Flow Control is required to ensure that all demands have been satisfied
successfully.

Element

8.2.5. Finish Closing

In the Finish Closing state the protocol waits for all sent demands to be fulfilled.

In case not all sent demands have been answered in time, the operation has failed and MUST be
terminated.

Security considerations for received messages:

When receiving Element messages it is important to always check the Message Flow
Control to secure the protocol against missing, duplicated, out-of-order or unexpected
messages.

8.2.6. Finished

In this state the connection is terminated, so no security considerations are needed.

Strata Estimator

8.2.7. Expect SE

Security considerations for received messages:

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 54

In case the strata estimator does not decode, the operation MUST be terminated to prevent
to get to an unresolvable state. The set difference calculated from the strata estimator
needs to be plausible, which means within the byzantine boundaries described in section
Byzantine Boundaries.

Full Element

Full Done

8.2.8. Full Receiving

Security considerations for received messages:

When receiving full elements there needs to be checked, that every element is a
valid element, no element has been received more than once and not more elements are
received than the other peer committed to sending at the beginning of the operation. The
plausibility should also be checked with an algorithm as described in Section 8.1.6.

When the Full Done message is received from the remote peer, it should be checked
that the number of elements received matches the number that the remote peer originally
committed to transmitting, otherwise the operation MUST be terminated. If the sets differ
(the FINAL CHECKSUM field in the Full Done message does not match to the SHA-512 hash
XOR sum of the local set), the operation has failed and the reconciliation MUST be aborted.
It is a strong indicator that something went wrong (eg. some hardware bug). This should
never occur!

IBF

Inquiry

Demand

Offer

Done

Element

8.2.9. Passive Decoding

Security considerations for received messages:

In case an IBF message is received by the peer a active/passive role switch is initiated by
the active decoding remote peer. A switch into active decoding mode MUST only be
permitted for a predefined number of times as described in Section 8.1.5

A check needs to be in place that prevents receiving an inquiry for an element multiple
times or more inquiries than are plausible. The upper thresholds for sent/received inquiries
is the remote set size the other peer has committed too (Case if the complete remote set is
new). The lower threshold for for sent/received inquiries is the absolute value of the set
difference between the local and remote set size (Case the set difference is only in the set of
a single peer). The other peer's committed set sizes is transmitted in the the Expecting IBF
state. Beware that it is possible to get key collisions and an inquiry for the same key can be
transmitted multiple times, so the threshold should take this into account. The sending and
receiving of Inquiry messages should always be protected with an Message Flow Control to
secure the protocol against missing, duplicated, out-of-order or unexpected messages.

Same action as described for Demand message in section Active Decoding.

Same action as described for Offer message in section Active Decoding.

Same action as described for Done message in section Active Decoding.

Same action as described for Element message in section Active Decoding.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 55

Element

8.2.10. Finish Waiting

In the Finish Waiting state the protocol waits for all transmitted demands to be fulfilled.

In case not all transmitted demands have been answered at this time, the operation has failed
and the protocol MUST be terminated with an error.

Security considerations for received messages:

When receiving Element messages it is important to always check the Message Flow
Control to secure the protocol against missing, duplicated, out-of-order or unexpected
messages.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 56

9. Constants
The following table contains constants used by the protocol. The constants marked with a * are
validated through experiments in .[byzantine_fault_tolerant_set_reconciliation]

Figure 41

Name | Value | Description
----------------------------+------------+-------------------------------
SE_STRATA_COUNT | 32 | Number of IBFs in a strata
 estimator.
IBF_HASH_NUM* | 3 | Number of times an element is
 hashed to an IBF.
 (from section 4.5.2)
IBF_FACTOR* | 2 | The factor by which the size
 of the IBF is increased in
 case of decoding failure or
 initially from the set
 difference.
 (from section 4.5.2)
MAX_BUCKETS_PER_MESSAGE | 1120 | Maximum bucket of an IBF
 that are transmitted in
 single message.
IBF_MIN_SIZE* | 37 | Minimal number of buckets
 in an IBF. (from section 3.8)
DIFFERENTIAL_RTT_MEAN* | 3.65145 | The average RTT that is
 needed for a differential
 synchronisation.
SECURITY_LEVEL* | 2^80 | Security level for
 probabilistic security
 algorithms. (from section 5.8)
PROBABILITY_FOR_NEW_ROUND* | 0.15 | The probability for a IBF
 decoding failure in the
 differential synchronisation
 mode. (from section 5.4)
DIFFERENTIAL_RTT_MEAN* | 3.65145 | The average RTT that is needed
 for a differential
 synchronisation.
 (from section 4.5.3)
MAX_IBF_SIZE | 1048576 | Maximal number of buckets in
 an IBF.
AVG_BYTE_SIZE_SE* | 4221 | Average byte size of a single
 strata estimator.
 (from section 3.4.3)
VALID_NUMBER_SE* | [1,2,4,8] | Valid number of SE's
 (from section 3.4)

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 57

10. GANA Considerations
GANA is requested to amend the "GNUnet Message Type" registry as follows:[GANA]

Figure 42

Type | Name | References | Description
--------+----------------------------+------------+----------------------
 559 | SETU_P2P_REQUEST_FULL | [This.I-D] | Request the full set
 of the other peer.
 710 | SETU_P2P_SEND_FULL | [This.I-D] | Signals to send the
 full set to the other
 peer.
 560 | SETU_P2P_DEMAND | [This.I-D] | Demand the whole
 element from the
 otherpeer, given
 only the hash code.
 561 | SETU_P2P_INQUIRY | [This.I-D] | Tell the other peer
 to send a list of
 hashes that match
 an IBF key.
 562 | SETU_P2P_OFFER | [This.I-D] | Tell the other peer
 which hashes match
 a given IBF key.
 563 | SETU_P2P_OPERATION_REQUEST | [This.I-D] | Request a set union
 operation from a
 remote peer.
 564 | SETU_P2P_SE | [This.I-D] | Strata Estimator
 uncompressed.
 565 | SETU_P2P_IBF | [This.I-D] | Invertible Bloom
 Filter slices.
 566 | SETU_P2P_ELEMENTS | [This.I-D] | Actual set elements.
 567 | SETU_P2P_IBF_LAST | [This.I-D] | Invertible Bloom
 Filter Last Slices.
 568 | SETU_P2P_DONE | [This.I-D] | Set operation is
 done.
 569 | SETU_P2P_SEC | [This.I-D] | Strata Estimator
 compressed.
 570 | SETU_P2P_FULL_DONE | [This.I-D] | All elements in
 full synchronisation
 mode have been sent
 is done.
 571 | SETU_P2P_FULL_ELEMENT | [This.I-D] | Send an actual
 element in full
 synchronisation mode.

11. Contributors
The GNUnet implementation of the byzantine fault tolerant set reconciliation protocol was
originally implemented by Florian Dold.

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 58

[RFC5869]

[RFC2119]

[RFC3385]

[RFC1951]

[byzantine_fault_tolerant_set_reconciliation]

[GANA]

[CryptographicallySecureVoting]

[ByzantineSetUnionConsensusUsingEfficientSetReconciliation]

[Eppstein]

[GNS]

12. Normative References
,

, , , May 2010,
.

, , ,
, , March 1997,
.

,

, , , September 2002,
.

, ,
, , May 1996, .

,
, 2021,

.

, , April 2020,
.

,
,

.

,
,

.

,
,

.

,
, 2014,

.

Krawczyk, H. and P. Eronen "HMAC-based Extract-and-Expand Key Derivation
Function (HKDF)" RFC 5869 DOI 10.17487/RFC5869 <https://www.rfc-
editor.org/info/rfc5869>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Sheinwald, D., Satran, J., Thaler, P., and V. Cavanna "Internet Protocol Small
Computer System Interface (iSCSI) Cyclic Redundancy Check (CRC)/Checksum
Considerations" RFC 3385 DOI 10.17487/RFC3385 <https://
www.rfc-editor.org/info/rfc3385>

Deutsch, P. "DEFLATE Compressed Data Format Specification version 1.3" RFC
1951 DOI 10.17487/RFC1951 <https://www.rfc-editor.org/info/rfc1951>

Summermatter, E. "Byzantine Fault Tolerant
Set Reconciliation" <https://summermatter.net/byzantine-fault-tolerant-
set-reconciliation-summermatter.pdf>

GNUnet e.V. "GNUnet Assigned Numbers Authority (GANA)" <https://
gana.gnunet.org/>

Dold, F. "Cryptographically Secure, Distributed Electronic
Voting" <https://git.gnunet.org/bibliography.git/plain/docs/
ba_dold_voting_24aug2014.pdf>

Dold, F. and C. Grothoff
"Byzantine set-union consensus using efficient set reconciliation" <https://
doi.org/10.1186/s13635-017-0066-3>

Eppstein, D., Goodrich, M., Uyeda, F., and G. Varghese "What's the Difference?
Efficient Set Reconciliation without Prior Context" <https://doi.org/
10.1145/2018436.2018462>

Wachs, M., Schanzenbach, M., and C. Grothoff "A Censorship-Resistant, Privacy-
Enhancing and Fully Decentralized Name System" <https://doi.org/
10.1007/978-3-319-12280-9_9>

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 59

https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3385
https://www.rfc-editor.org/info/rfc3385
https://www.rfc-editor.org/info/rfc1951
https://summermatter.net/byzantine-fault-tolerant-set-reconciliation-summermatter.pdf
https://summermatter.net/byzantine-fault-tolerant-set-reconciliation-summermatter.pdf
https://gana.gnunet.org/
https://gana.gnunet.org/
https://git.gnunet.org/bibliography.git/plain/docs/ba_dold_voting_24aug2014.pdf
https://git.gnunet.org/bibliography.git/plain/docs/ba_dold_voting_24aug2014.pdf
https://doi.org/10.1186/s13635-017-0066-3
https://doi.org/10.1186/s13635-017-0066-3
https://doi.org/10.1145/2018436.2018462
https://doi.org/10.1145/2018436.2018462
https://doi.org/10.1007/978-3-319-12280-9_9
https://doi.org/10.1007/978-3-319-12280-9_9

Appendix A. Test Vectors

A.1. Map Function
INPUTS:

OUTPUT:

Figure 43

k: 3
ibf_size: 300

key1: 0xFFFFFFFFFFFFFFFF (64-bit)
key2: 0x0000000000000000 (64-bit)
key3: 0x00000000FFFFFFFF (64-bit)
key4: 0xC662B6298512A22D (64-bit)
key5: 0xF20fA7C0AA0585BE (64-bit)

Figure 44

key1: ["122","157","192"]
key2: ["85","243","126"]
key3: ["208","101","222"]
key4: ["239","269","56"]
key5: ["150","104","33"]

A.2. ID Calculation Function
INPUTS:

Figure 45

element 1: 0xFFFFFFFFFFFFFFFF (64-bit)
element 2: 0x0000000000000000 (64-bit)
element 3: 0x00000000FFFFFFFF (64-bit)
element 4: 0xC662B6298512A22D (64-bit)
element 5: 0xF20fA7C0AA0585BE (64-bit)

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 60

OUTPUT:

Figure 46

element 1: 0x5AFB177B
element 2: 0x64AB557C
element 3: 0xCB5DB740
element 4: 0x8C6A2BB2
element 5: 0x7EC42981

A.3. Counter Compression Function
INPUTS:

OUTPUT:

Figure 47

counter serie 1: [1,8,10,6,2] (min bytes 4)
counter serie 2: [26,17,19,15,2,8] (min bytes 5)
counter serie 3: [4,2,0,1,3] (min bytes 3)

Figure 48

counter serie 1: 0x18A62
counter serie 2: 0x3519BC48
counter serie 3: 0x440B

Authors' Addresses
Elias Summermatter
Seccom GmbH
Brunnmattstrasse 44
CH- 3007 Bern
Switzerland

 elias.summermatter@seccom.ch Email:

Christian Grothoff
Berner Fachhochschule
Hoeheweg 80
CH- 2501 Biel/Bienne
Switzerland

 grothoff@gnunet.org Email:

Internet-Draft Set Union June 2021

Summermatter & Grothoff Expires 18 December 2021 Page 61

mailto:elias.summermatter@seccom.ch
mailto:grothoff@gnunet.org

	Introduction
	Related Work
	Code Improvements
	Determining the Optimal IBF Size after Failed Decoding
	Variable IBF Counter Size
	Statemachine
	Improve Strata Estimator prediction precision
	Added Support for Multiple Strata Estimators
	IBF Size in Strata Estimator
	Number of Strata Estimator dependant on Set Size
	Result

	Message Changes
	Send Full Message
	IBF Message
	Operation Request Message
	Inquiry Message

	Error in Salting of IBF
	Additional Phases
	Full Receiving
	Renamed Phases

	Minimal Number of IBF Buckets
	Determinate Average Element Size
	Determinate Maximal IBF Counter
	Improve IBF Size
	Check Bucket Falsely Classified as Pure

	Performance Tests
	Goals
	Test Sets Generation
	Measure the Round Trip Time (RTT)
	Measure the Bandwidth
	Performance Tests
	Strata Estimator Estimation Distribution
	IBF Parameter Study
	Differential vs. Full Mode

	Results

	Security
	Attacker
	Validate Message Received in Correct Phases
	Message Control Flow
	Limit Active/Passive Switches in Differential Synchronisation
	Full Synchronisation Plausibility Check
	Validate Mode of Operation
	Byzantine Boundaries
	Security Level
	Results

	Conclusion
	Summary
	Addressees of the Improvement
	Future Work

	Indices and References
	Declaration of Authorship
	Appendix A - Project Management
	Risk Analysis
	Time-Line
	Time Management
	Communication/Meetings
	Decisions
	Performance Analysis: Mathematical or through Simulations
	IBF Factor Static or Variable
	Improvements

	Conclusion

	Appendix B - RFC

